This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
A new system has been developed that allows a clear understanding of all polymerization and end product polymer properties utilizing Automatic Continuous Online Monitoring of Polymerization Reactions (ACOMP). This technique was developed and has been in use in the research laboratories of Prof. Wayne Reed at Tulane University for nearly 20 years as a tool to study polymerization techniques such as free radical, controlled radical, solution, bulk and emulsion polymerizations. This technology has allowed researchers at Tulane to control polymerizations in real time, targeting specific desired polymer characteristics. It should be noted that this technique allows for real-time characterization of molecular weight, intrinsic viscosity, reaction kinetics, polymer conversion and residual monomer concentrations. Under appropriate conditions, co-monomer composition and molecular weight distribution can be determined by ACOMP without the use of chromatography. The correct mix of end properties is critical to performance in the chosen application, and real-time monitoring and control of these properties has long been of interest to many researchers and manufacturers in the field of developing polymers to be used as coatings, adhesives, building materials and many other specialty applications.
The ACOMP Research Reactor Monitoring and Control system in this particular application is used to characterize the real-time evolution of weight average molecular weight and other properties for a free-radical homopolymerization of poly(methyl 2-methylpropenoate), more commonly known as poly(methyl methacrylate) (PMMA), in butyl acetate as solvent. This type of polymer and many of its derivatives are found in various coatings applications.