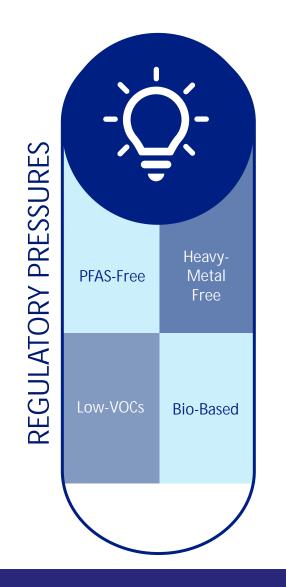


EXPERT SPEAKER: JAMES RAPLEY

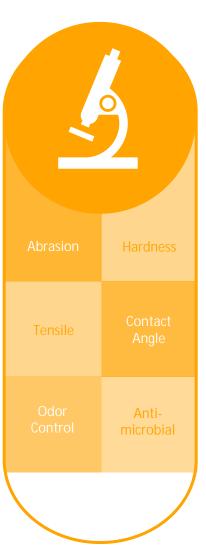
SPEAKER BIOGRAPHY

With nearly a decade's worth of experience in new product development, James Rapley oversees coating technology projects for a variety of substrates at Microban. James possesses a solid understanding of dispersion and formulation, in addition to polymer formulation containing pigments, dispersion agents, surfactants and binding agents for use in coatings. James has several published technologies in the Li ion battery coatings industry focusing on ultra-thin coatings, and he has applied this knowledge to creating novel antimicrobial coating technologies.

Prior to joining Microban, James worked as a research scientist for a leading manufacturer of high-performance membrane separators, with a focus on ceramic coatings development. James holds Bachelor of Science and Master of Science degrees in Chemistry.



AGENDA

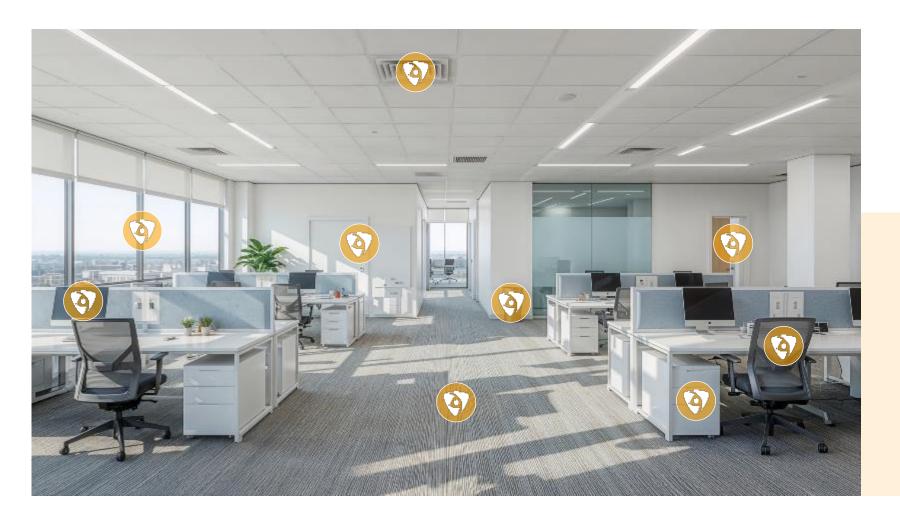

In this session we will cover:

- 01 Functionality Wheel
 - 02 Key Considerations
- O3 Functional Coatings designed for Interior Applications
 - O4 Functional Coatings designed for Exterior Applications
- 05 Miscellaneous Functionalities and Combinations

FUNCTIONALITY WHEEL

KEY CONSIDERATIONS

The product be used for End Use: What application will the product be used for


Substrate Properties: How will the substrate impact the coating's ability to perform?

Formulation Compatibilities: Are all components stable

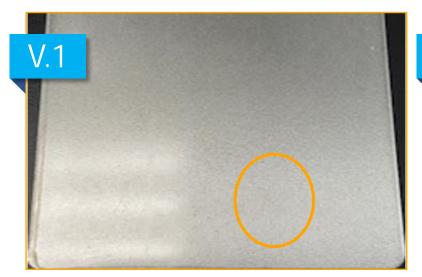
Manufacturing Considerations: Process Temps, Application Methods, Regulations, etc.

Test Methods: Test Methods designed to meet specs and/or show functional performance

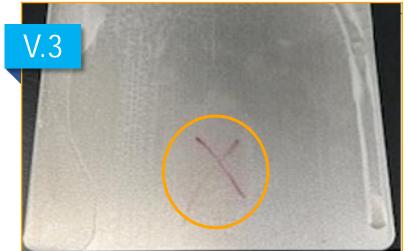
INTERIOR MULTIFUNCTIONAL COATINGS

- Many surfaces are covered with protective coatings
- Interior coatings need to operate well after multiple touches, abrasions, and improve overall consumer experience

FLUORINE FREE OMNIPHOBIC COATING


Tend Use: Protecting High Touch Surfaces


Substrate Properties: Non-porous, metal, ceramic

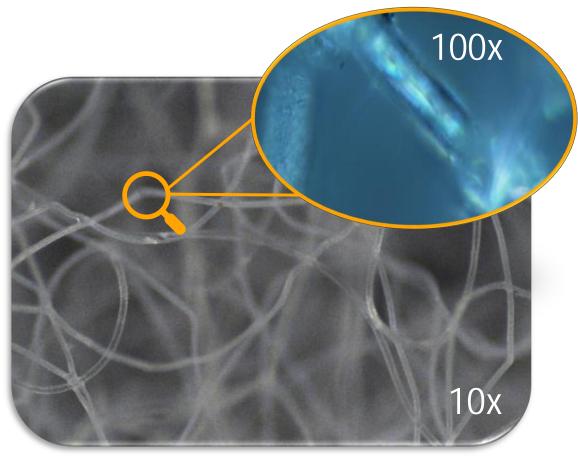

Test Methods: Contact Angle, X-Test, ISO 22196, ASTM 30 pt. III

FLUORINE FREE OMNIPHOBIC COATING

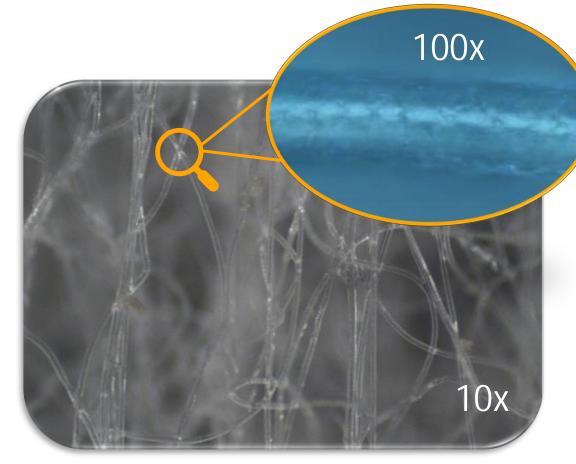
	Contact Angle Measurements			
Repellency	Formulations			
	V.1	V.2	V.3	
N-Hexadecane	33.27	27.4	30.11	
Water	109.69	118.04	109.03	

FLUORINE FREE OMNIPHOBIC COATING

Sample Description	Antibacterial		
	Ec	Sa	
Untreated PFAS-Free Coating	No Reduction	90%	
Treated PFAS-Free Coating	>99%	>99%	


FLEXIBLE AND DURABLE ANTIMICROBIAL COATING (PET FIBERS)

Tend Use: Filtration Media


Substrate Properties: Porous PET Nonwovens

Test Methods: ISO 22196, AATCC TM 100, ASTM E-2180, ASTM G21, AATCC 30 pt. III, Bromo-phenyl Blue Staining Test

COATING ADHESION

UNCOATED FILTER

COATED FILTER

ROBUST ANTIMICROBIAL PERFORMANCE

Protocol: ISO 22196 Sample # Sample Description		Ec	Ec		Sa	
		Viable Organisms	Log Reduction	Viable Organisms	Log Reduction	
	Inoculum [TEMPO (Ec-1:500 JNB, Sa-1:250 JNB)]	170000		260000		
04	Untreated Filter; replicate 1	> 4900000	0.0	12000	2.0	
05	Untreated Filter; replicate 2	4900000	0.0	19000	1.8	
06	Untreated Filter; replicate 3	> 4900000	0.0	30000	1.6	
07	Microban Coating A; replicate 1	< 100	4.7	< 100	4.4	
08	Microban Coating A; replicate 2	< 100	4.7	< 100	4.4	
09	Microban Coating A; replicate 3	< 100	4.7	< 100	4.4	
01	C_PP PGCs; replicate 1	> 4900000		2100000		
02	C_PP PGCs; replicate 2	> 4900000		> 4900000		
03	C_PP PGCs; replicate 3	> 4900000		2100000		
	Mean of Untreated Controls for Reduction Calculation	4900000		2785340		

ROBUST ANTIMICROBIAL PERFORMANCE (CONT'D)

Protocol: AATCC Test Method 100		Ec		Sa	
Sample #	Sample Description	Viable Organisms Log Reduction		Viable Organisms	Log Reduction
	Inoculum [TEMPO (5% NB) 2019 method. Samples autoclaved prior to testing. Letheen neutralizer.]	220000		170000	
04	untreated nonwoven; replicate 1	> 4900000		3000000	0.4
05	untreated nonwoven; replicate 2	> 4900000	0.0	910000	
06	untreated nonwoven; replicate 3	> 4900000		2500000	
07	Microban Coating A; replicate 1	2000		< 100	
08	Microban Coating A; replicate 2	< 100	2.7	< 100	4.7
09	Microban Coating A; replicate 3	> 4900000		< 100	
01	lab cotton controls; replicate 1	> 4900000		> 4900000	
02	lab cotton controls; replicate 2	> 4900000		> 4900000	
03	lab cotton controls; replicate 3	> 4900000		> 4900000	
	Mean of Untreated Controls for Reduction Calculation	4900000		4900000	

ROBUST ANTIMICROBIAL PERFORMANCE (CONT'D)

Protocol: ASTM E-2180		An Ec		Sa		G21			
			Log Poduction	Viable Organisms	Log Poduction	Viablo Organisms	Log Poduction	Pop 1	Pon 2
Sample #	Sample Description	Viable Organisms	Log Reduction	Viable Organisms	Log Reduction	Viable Organisms	Log Reduction	керт	Reμ Z
	Inoculum [Plate Count (An Agar Slurry) 96 hour contact.]	700000		230000		680000			
04	Filter untreated; replicate 1	370000	0.3	> 4900000	0.0	130000	-2.0		
05	Filter untreated; replicate 2	30000	1.4	> 4900000	0.0	11000	-0.9	2	2
06	Filter untreated; replicate 3	730000	0.1	> 4900000	0.0	1900	-0.2		
07	Microban Coating A; replicate 1	2700	2.5	< 100	4.7	< 100	3.6		
08	Microban Coating A; replicate 2	600	3.1	< 100	4.7	< 100	3.6	0	0
09	Microban Coating A; replicate 3	700	3.1	< 100	4.7	< 100	3.6		
01	C_PP PGCs; replicate 1	790000		> 4900000		200			
02	C_PP PGCs; replicate 2	960000		> 4900000		1000			
03	C_PP PGCs; replicate 3	740000		> 4900000		12000			
	Mean of Untreated Controls for Reduction Calculation	824853		4900000		1339			


FLEXIBLE AND DURABLE ANTIMICROBIAL COATING (PET FIBERS)

Sample	Antiba	ntibacterial Antifung	
description	Ec	Sa	ASTM G21
Microban Coating	>99%	>99%	Pass

Fungal Growth: AATCC TM30 (pt.III)

Untreated Filter

Filter with Anti-microbial Coating

FLEXIBLE AND DURABLE ANTIMICROBIAL COATING (PET FIBERS)


Home Laundering Durability

Sample	10 HL LP1 Frontload ASTM E2149		
description	Ec	Sa	
Wash Durable Microban Coating	>99.8%	>97.7%	

BPB Testing after Washing with Anionic Detergent

FLEXIBLE AND DURABLE ANTIMICROBIAL COATING-POLYPROPYLENE FIBERS

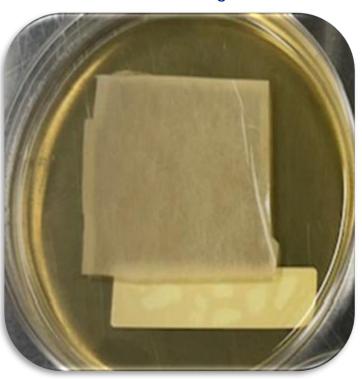
The End Use: Filtration Media

Substrate Properties: Porous Polypropylene Nonwovens

Test Methods: AATCC 30 pt. III

FLEXIBLE AND DURABLE ANTIMICROBIAL COATING- POLYPROPYLENE FIBERS

Fungal Growth: TM30 (pt.III)


Uncoated PP

Microban Coating A on PP

Microban Coating B on PP

Microban Coating B protects polypropylene better than Microban Coating A

EXTERIOR MULITFUNCTIONAL COATINGS

- Many surfaces are covered with protective coatings
- Exterior coatings require strong durability against factors such as temperature, rain, and UV exposure

The End Use: Exterior Building Materials

Substrate Properties: Flat, flexible, PVC, roofing membranes

Test Methods: UV Stability, Block Resistance, Dirt Pick Up, AATCC TM 30 pt III, Internally developed algae growth methods

OUTDOOR WEATHERING

GENERAL PURPOSE OUTDOOR ACRYLICS

Average Gloss Retention after 1398hrs

Formulation	Avg. Gloss Retention (%)
Microban Coating	92.17
Commercial Acrylic A	88.46
Commercial Acrylic B	77.57
Commercial Acrylic C	38.15

COMMERCIAL ROOF COATINGS		
Average Gloss Retention after 1367hrs		
Formulation Avg. Gloss Retention (%)		
Microban Coating	91.12	
Acrylic Roof Coating	11.88	

FLUORO-RESINS		
Average Gloss Retention after 1000hrs		
Formulation Avg. Gloss Retention (%		
Microban Coating	102.94	
Fluoro-resin Coating	83.74	

Exterior coating shows superior gloss retention compared to various acrylics and even fluoro-resins

Block Resistance

Block Resistance	Commercial PVDF control	Microban Coating
Block resistance (room temperature)		
0.5 kg weight	_	++
Block resistance (60 degrees C for 1 hour)		
0.5 kg weight	-	++

Testing performance summary

- Samples were folded and clipped at the ends allowing the coating to come into contact with itself
- 500 g weight was added to the sample to the weight of finished material
- Weight and clip were released after 24 hours to see if the fabric would release or continue to stick
- PVDF control remained stuck to itself after 24 hours; had to manually remove
- Coating formulation was able to release once weight was removed and clip was removed showing no tackiness

Red Iron Oxide

DIRT PICK UP

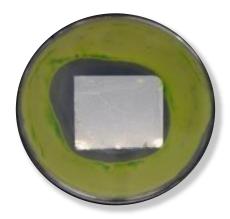
1000hr QUV

Water Rinse

Dirt Build-up is easily rinsed

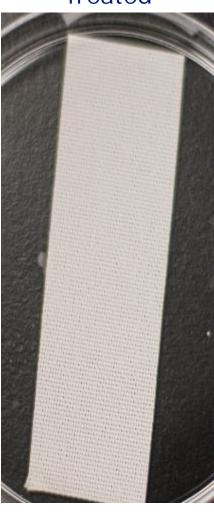
Dirt Build-up remains

Exterior coating designed to protect substrates from mold/fungi and algae growth

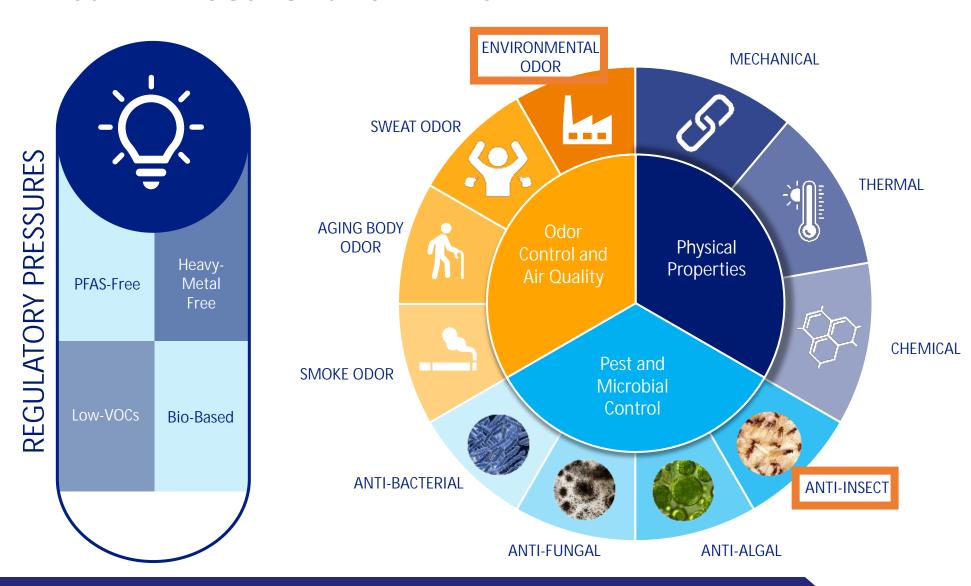

Untreated

Mold Growth

Treated

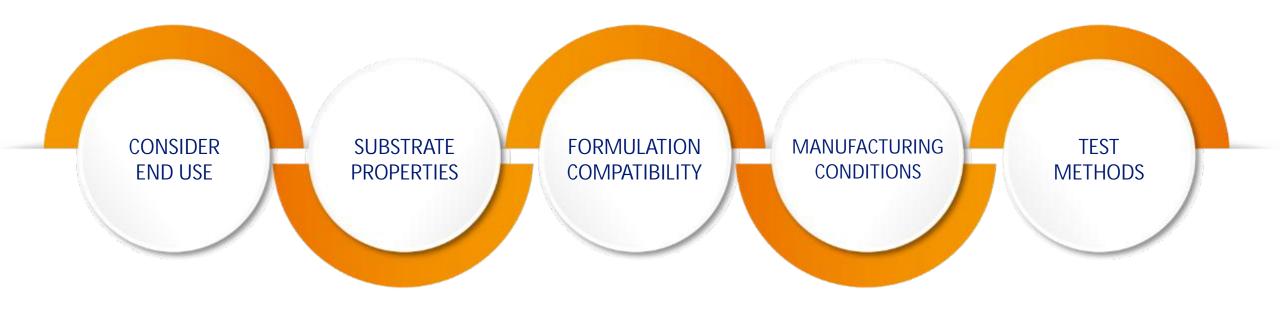

Tier 2 Algae growth studies are designed to mimic real conditions

Untreated

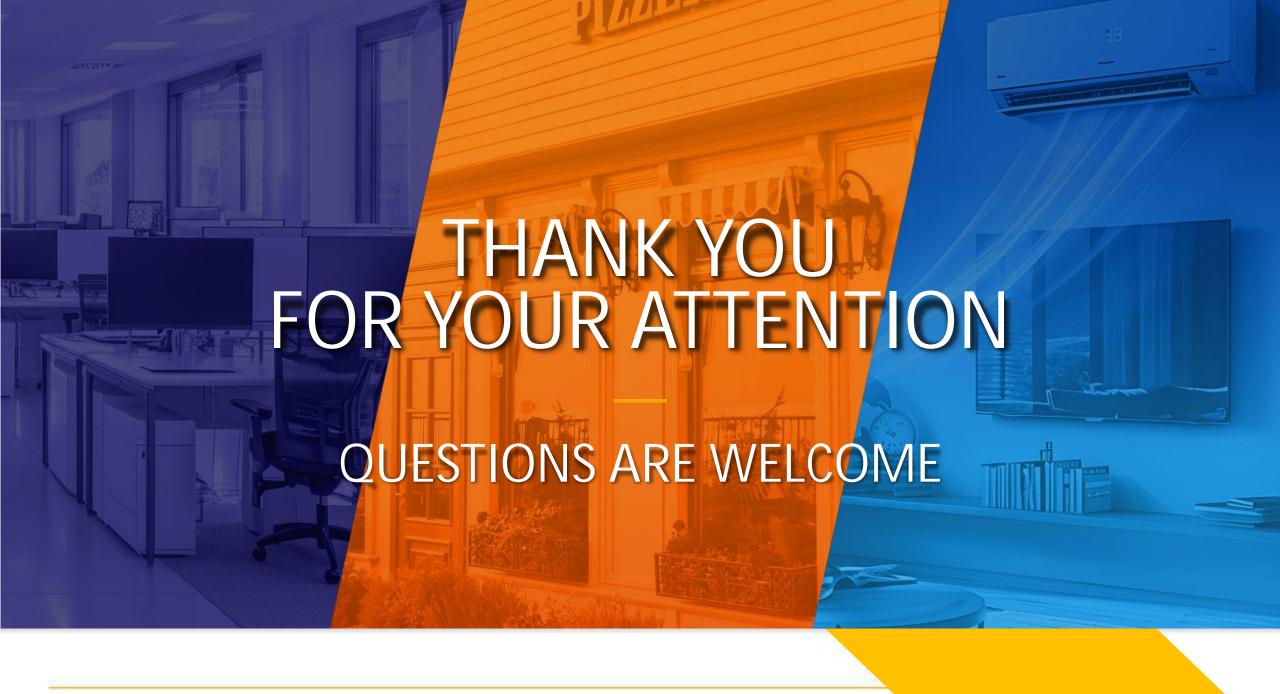


Algae Growth

Treated



MISCELLANEOUS FUNCTIONALITES



CONCLUSION

Multifunctional coatings need to be multifaceted and perform in ways that resonate with end users

