Novel flame retardant solutions for water based, clear wood coatings

Jakub Lison
Meyrav Abecassis – Wolfovich, PhD
2021 Coatings Trends & Technologies conference
September 8th, 2021
About ICL Group

Headquartered in Israel, with plants across the globe

Global manufacturer of fertilizer and specialty chemicals

World’s largest producer of elemental bromine

World’s leading producer of a variety of bromine, phosphorus and inorganic Flame Retardants (FRs)

Multiple awards for sustainability efforts, inclusion in FTSE4Good and A- Carbon Score
Product Stewardship & Lifecycle by ICL

- **Development** - *Sustainability Index* for Product Development
- **Production** - **VECAP** – Voluntary Emissions Control Action Program
- **Application** - **SAFR®** – A Systematic Assessment for Flame Retardants
- **End of Life** - Circular Economy Initiatives – PSLoop, Plast2becleaned, etc.

Why Flame Retardants?

• Building codes, Product specs require Fire Safety
• Recent major fires shine a spotlight on fire safety
• FRs are a major way in which flame retardancy is achieved
• Coating's market is well served by APP and ATH:
 • Not possible to achieve transparency
• Other options like chlorinated phosphates and phosphate esters have issues in WB systems
• Market need = Water borne clear, FR wood coatings!
FR Perception: Halogen = BAD Non-Hal = GOOD

Recent EPA restrictions: 1 Br FR 1 Non-Hal FR
- Already off the market
- Currently in use = Business risk

Next EPA priority review: 1 Br FR 1 Non-Hal FR
- Reacted in use, likely no effect
- Component of major NH FRs

Path forward: Polymeric, reactive or inorganic FRs regardless of chemistry!*

* U.S EPA: "There is an exceedingly low probability that potential exposure to high molecular weight water-insoluble polymers, as a class, will result in unreasonable risk or injury to human health or the environment"
Current FR products on the market

Historically used chlorinated phosphate esters:
• Excellent compatibility and efficiency
• Problematic HSE profiles, under regulatory scrutiny

Possible replacement with traditional phosphate esters:
• Excellent compatibility but not as efficient
• Very good rheological properties for 100% solids systems

Low particle size brominated flame retardants:
• High efficiency products, polymeric preferred
FR coating development
Goal = Clear, water borne, FR solution

- Developing New FR Molecules
- Application and Small-Scale FR testing
- FR Paint Formulation
- Large scale testing

And here we are today
Development Results

Solid Brominated Polymer

- Low particle size solid
- Easily Formulated
- Translucent Film
- Suitable for water based, solvent based and 100% solids systems
- Oeko-Tex approved

Brominated Acrylic Copolymer

- A submicron water-based dispersion
- Creates a clear film
- High compatibility with water-based resins and paint components
- Acts as co-binder in the paint

ICL patented products
Product Appearance

<table>
<thead>
<tr>
<th></th>
<th>NO FR, WB</th>
<th>Solid Br Polymer</th>
<th>Br Acrylate</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH as is</td>
<td>7.2</td>
<td>7.3</td>
<td>7.1</td>
</tr>
<tr>
<td>Viscosity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(63S, 100 rpm, RT), cp</td>
<td>921</td>
<td>158</td>
<td>78*</td>
</tr>
<tr>
<td>Gloss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20°, 60°, 85°)</td>
<td>11.4, 68.8, 80.5</td>
<td>1.2, 9.1, 20.8</td>
<td>15.5, 55.3, 64.1</td>
</tr>
<tr>
<td>Transparency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(40 m thickness)</td>
<td>99.1</td>
<td>76.5</td>
<td>98.3</td>
</tr>
</tbody>
</table>

* (61S, 60 rpm, RT)
Small Scale NFPA 701 testing

- **No FR, WB Acrylic**
 - Fail = Full burn

- **WB Acrylic + Br Polymer**
 - Pass = Self Extinguish

- **WB Acrylic + Br Acrylate**
 - Pass = Self Extinguish
Small Scale Cone Calorimeter testing

Heat Release Curves

- WB Acrylic - No FR
- 46% Br Acrylate Copolymer + 12% APO
- 15% Solid Br Polymer

Peak Heat Release rate

Time to Ignition

Effect of coating combustion

Effect of Substrate combustion

Heat Release Rate (kW/m²)

Time (s)
Cone Calorimeter results – Solid Br Polymer

Cone Calorimeter Results

Heat Release Rate (kW/m²)

- **WB Acrylic - No FR:**
 - Avg. Heat Release Rate: 184 kW/m²
 - Peak Heat Release Rate: 385 kW/m²
 - Time to Ignition: 0 sec

- **Solid Br Polymer 10%**
 - Avg. Heat Release Rate: 156 kW/m²
 - Peak Heat Release Rate: 297 kW/m²
 - Time to Ignition: 5 sec

- **Solid Br Polymer 10% APO 7.5%**
 - Avg. Heat Release Rate: 163 kW/m²
 - Peak Heat Release Rate: 274 kW/m²
 - Time to Ignition: 10 sec

- **Solid Br Polymer 15%**
 - Avg. Heat Release Rate: 147 kW/m²
 - Peak Heat Release Rate: 271 kW/m²
 - Time to Ignition: 15 sec

- **Solid Br Polymer 15% APO 11.6%**
 - Avg. Heat Release Rate: 146 kW/m²
 - Peak Heat Release Rate: 235 kW/m²
 - Time to Ignition: 20 sec
Cone Calorimeter results – Br Acrylate

Heat Release Rate (kW/m²)

- WB Acrylic - No FR: 184
- Br Acrylate Disp. 38%: 147
- Br Acrylate Disp. 37% APO 10%: 146
- Br Acrylate Disp. 46.3%: 154
- Br Acrylate Disp. 46.2% APO 12.5%: 144

Average Heat Release Rate

Peak Heat Release Rate

Time to ignition (sec)

- WB Acrylic - No FR: 385
- Br Acrylate Disp. 38%: 288
- Br Acrylate Disp. 37% APO 10%: 254
- Br Acrylate Disp. 46.3%: 261
- Br Acrylate Disp. 46.2% APO 12.5%: 225
Large scale FR testing

EN 13501 (SBI)

ASTM E-84

https://blog.starcysystems.com/blog/astm-e-84-fire-rating-your-questions-answered;
http://virtual.vtt.fi/virtual/innofirewood/stateoftheart/database/euroclass/euroclass.html;
https://www.fire-testing.com/single-burning-item-sbi/
Addition of Br Epoxy with Magnesium Hydroxide improved the rating of the coated wood from class D to class C (~50% red. In FIGRA)

* Patent application published
Indicative SBI results*

Addition of Br Epoxy with Magnesium Hydroxide reduced smoke, producing s2 rating with Class C FIGRA

* Patent application published
Addition of Br polymers changed the rating of the coated plywood from class C to class B.
Addition of Br polymers reduced flame spread and maximum burn temperature.
Summary

Product formulation and appearance:
- Both Br polymers easily dispersed in water
- Br Acrylate provides superior gloss

Cone calorimeter testing:
- More than 20% improvement in peak heat release
- Magnesium hydroxide resulted in improved smoke parameters

SBI test (EU):
- Achieved Class C on FR MDF board based on FIGRA (Br FR + Mg(OH)₂ synergist)
- SMOGRA for s2 rating is very close to S1

ASTM E84 Test (NA):
- Achieves Class B on Douglas Fir plywood
- Large margin for Flame Spread and Smoke developed
To conclude..

- Development of and effective sustainable polymeric flame retardants for paint and coating.
- The products gained good FR results in international large-scale testing.
- All these, while maintaining paint stability and wood appearance in the application.
Disclaimer

Copy or use of this presentation or any part thereof is forbidden, without the prior written consent of ICL. ICL retains all intellectual property interests associated with this presentation, including but not limited to trade names and marks.

ICL makes no claim, promise or guarantee of any kind regarding the accuracy, adequacy or completeness of the content of the information presented and expressly disclaims all liability for any errors or omissions in such content. ICL does not warrant that the information contained herein is true, up-to-date, or non-misleading.

ICL makes no warranties hereunder whether express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. ICL shall not be held liable for any damages, whether compensatory, direct, indirect, incidental, special, or consequential, arising out of, in connection with or based on the content of this presentation and accepts no liability for the consequences of any actions taken on the basis of the information provided.

The information herein is not intended to constitute advice or a recommendation, whether scientific, regarding hazardous materials, chemical exposure or otherwise, and should not be relied upon in lieu of consultation with appropriate scientific advisors.

ICL is a publicly traded company. The information herein may reflect the ICL’s current views with respect to future events or financial performance, which may change. You may not rely on this presentation as providing an analysis of the ICL’s financial position or trading prospects. This presentation does not constitute an offer or invitation to purchase any securities, and no part of it shall form the basis of any investment decision in relation thereto.
Thank You

Jakub Lison – Technical Support Manager;
Jakub.Lison@icl-group.com
www.linkedin.com/in/jakub-lison/

Acknowledgment: Meyrav Abecassis - Wolfovich, PhD
Formulation Lab Manager – ICL-IP R&D
Beer Sheva, Israel