
A Cost-Effective Approach to Formulate Emulsions Leading to Improved Colloidal Stability and Finished Coatings

Why Improve Coatings

- 1. Growing demand for higher-quality coatings
- 2. Need for increased durability
- 3. Improved adhesion
- 4. More robust and efficient manufacturing processes
- 5. Desire for greater transparency

Solvent-borne Coating (Homogeneous System)


any Tg is possible due to solvent as plasticizer

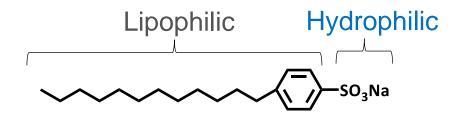
homogeneous film substrate

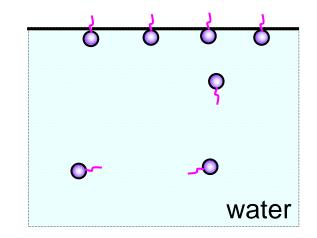
Sufficient entanglement (→ good strength) | Easy to cure by various systems | No hydrophilic impurities

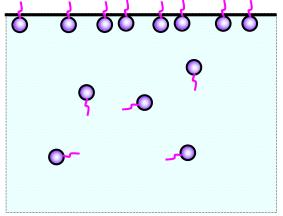
The Function of a Surfactant

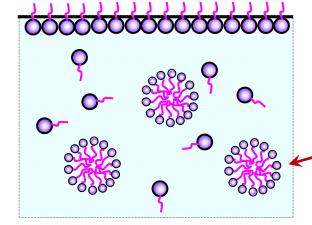
Absorbs at water/oil interface and stabilizes oil droplets in water

Hydrophobic part

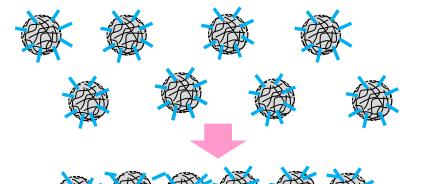

$$H_{3}C \xrightarrow{H_{2}} 0$$
 $H_{3}C \xrightarrow{H_{2}} C \xrightarrow{H_{1}} C \xrightarrow{H_{2}} C \xrightarrow{H_{2}$


Typical Surfactant only Emulsion Polymerization


Limited solubility to both water and oil (Styrene, acrylate etc)


→ Localizes at their interface or forms micelle

concentration

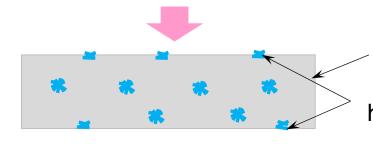


Surfactant Micelle

Water-borne Coating (Heterogeneous System)

polymer particle in water (2 phases)

colloidal stability is obtained by physically adsorbed surfactant

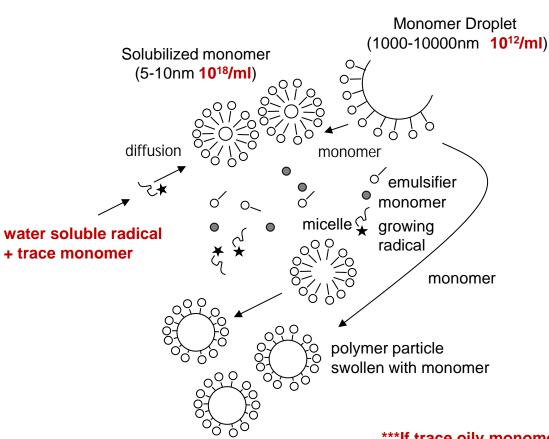

 $(2 \rightarrow 1 \text{ phase})$

surfactant gradually desorb

polymer chain <u>can</u> only diffuse over Tg

surfactant is a
nuisance at this stage!
(no place to stay)

homogeneous film is formed over Tg



absorbing water, causing blister & whitening

hindering adhesion

What is Emulsion Polymerization

**If oil-soluble initiator is used,

polymerization proceeds in large

droplet and then these aggregate

Ingredients

oil-soluble monomer*
 (*trace amount dissolves in water)
surfactant
water-soluble initiator**
water

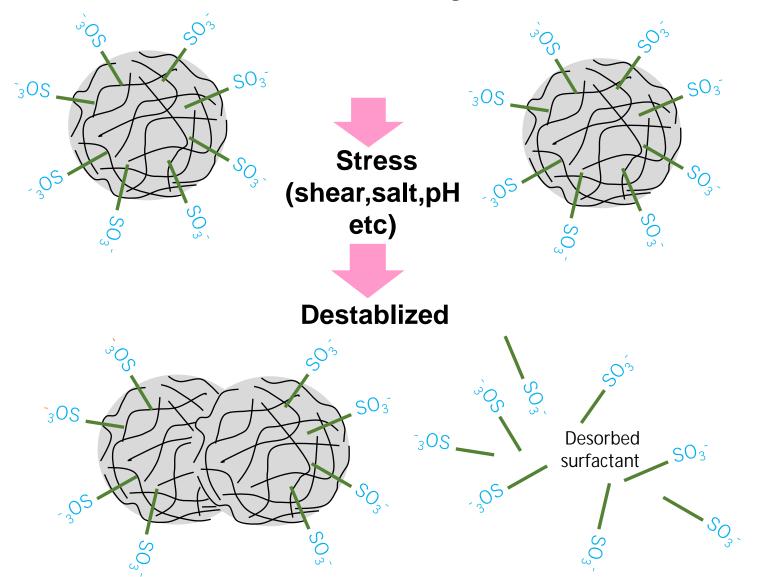
Primary radical generates in water phase

Where primary radical go?

to monomer micelle or trace monomer in water phase***

Because total surface area micelle >>> monomer droplet

***If trace oily monomer exists in water, oily oligomer generates and enter into micelle. No problem!


If water-soluble monomer exists in water, water-soluble polymer generates.

These polymer gives bad affect to emulsion and film property.

****How to prevent this is critical!

Emulsion Stabilized by Conventional Surfactant

Aggregation

Reactive Emulsifiers

(High)

Polymerizability

(Low)

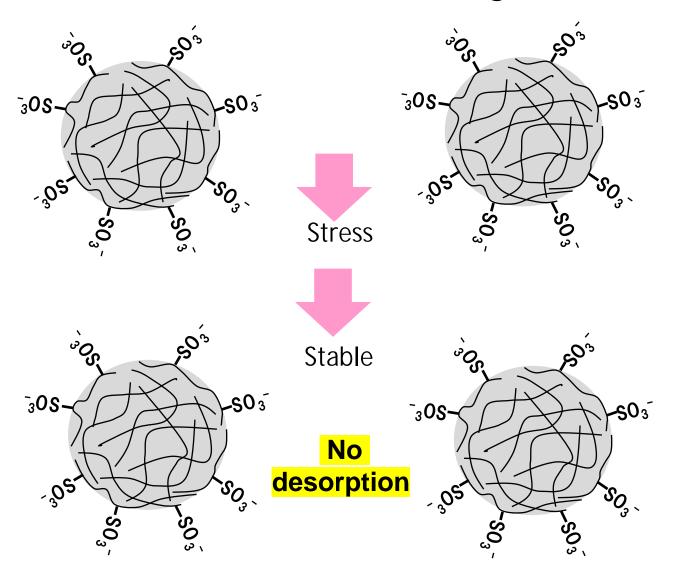
Aliphatic Sulfonate Monomer so.

Reactive surfactant (Large Molecule)

$$VS$$
 SO_3Na SO_3Na OH

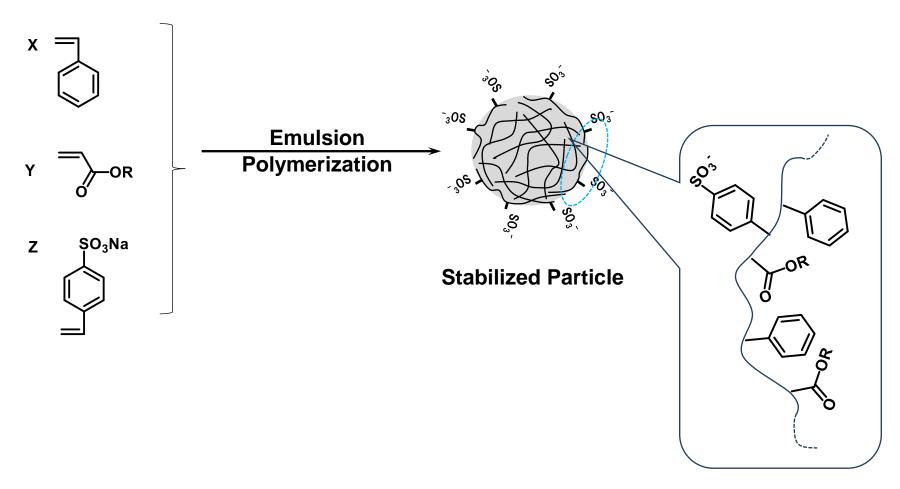
Each of these has positives and negatives

$$(CH_2CH_2O)_mSO_3NH_4$$


(Low)

Surface Activity

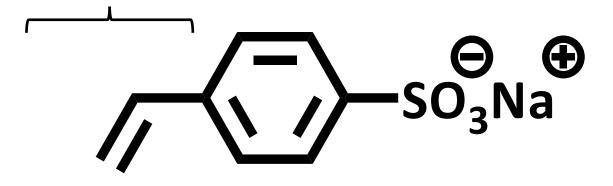
(High)


Emulsion Stabilized by NaSS (ideal image)

Emulsion Stabilized by NaSS (closer look)

NaSS copolymer

Major Advantages/Disadvantages


- 1. Small RE molecules (AMPS, SVS) lack emulsification
- 2. Large RE molecules have a higher molecular weight and usage and cost/kg
- 3. Large RE molecules can also act as a defect similar to emulsifiers
- 4. While NaSS isn't a 'Superman' solution, it does offer significant advantages

Sodium Styrene Sulfonate

(1) Good Surface Activity

(2) High Reactivity

(3) High Thermal Stability

Surfactant-free Emulsion Polymerization by NaSS

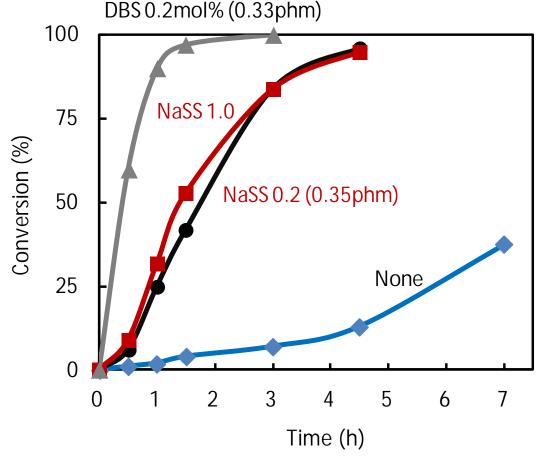
Polymerization proceeds by small dosage of NaSS

Ingredients

Styrene/n-Butylacrylate = 1/1 wt.r

NaSS or DBS* = variable

Potassium Persulfate = 0.2 mol%/MM Water (Total MM=20wt%)



Dosed all at once

70°C×5h

*DBS

Polymerization time vs. conversion

Surfactant-free Emulsion Polymerization by NaSS

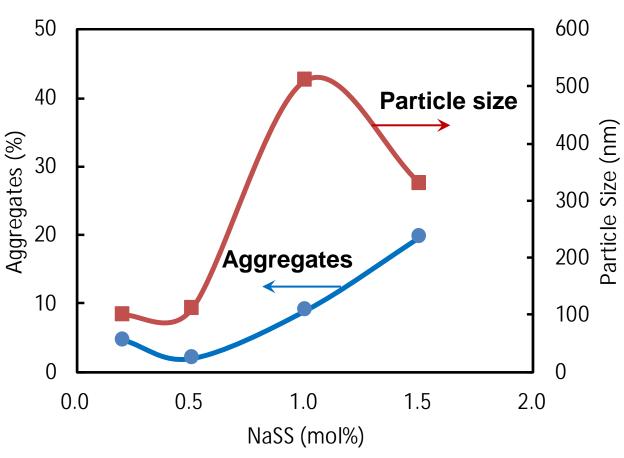
Optimal NaSS dosage ~ 0.5 mol%

Ingredients

Styrene/n-Butylacrylate = 1/1 wt.r

NaSS = variable

Potassium Persulfate = 0.2 mol%/MM


Water (Total MM=20wt%)

Dosed all at once

70°C×5h

NaSS dosage vs. aggregates and particle size

Practical Example of Emulsion Polymerization

Condition

Pre-emulsified monomer was continuously dosed

Nonionic surfactants were used to emulsify monomer

Monomer Emulsion

Styrene

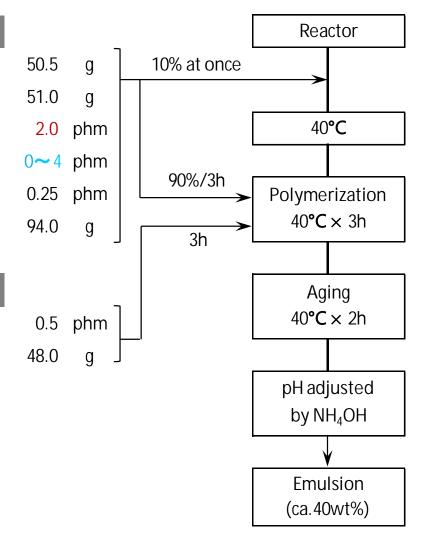
n-Butylacrylate

Sulfonate monomer*

Surfactant**

Sodium bisulfite

Water

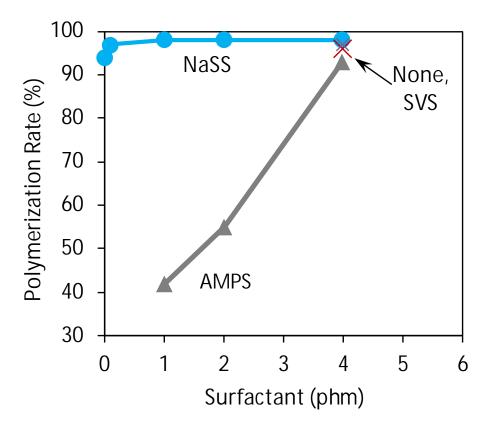

Initiator

Ammonium persulfate

Water

**Surfactant

$$C_9H_{19}$$
 O CH_2CH_2O

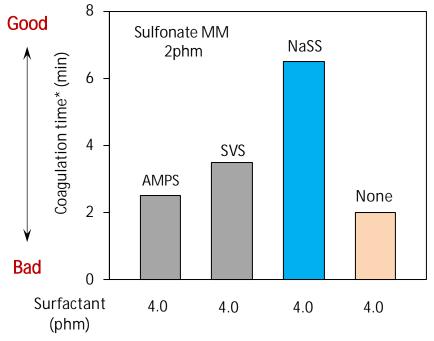


Benefits of NaSS: Polymerization Rate

Emulsion polymerization proceeds up to high conversion with less surfactant

Surfactant dosage vs. conversion

*Sulfonate monomer
(2phm
$$\rightleftharpoons 0.9 \sim 1.7 \text{mol}\%$$
)
—SO₃Na
NaSS
—H H₂ C -SO₃H
AMPS
SVS SO₃Na



Benefits of NaSS: Emulsion Stability

NaSS gives excellent colloidal stability

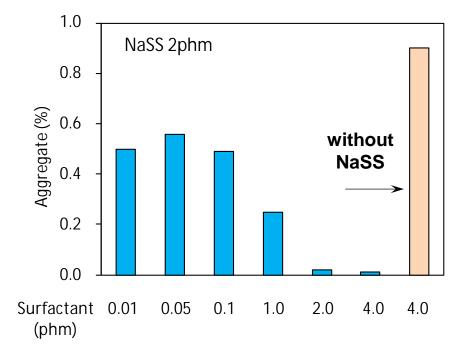
Aggregation during polymerization

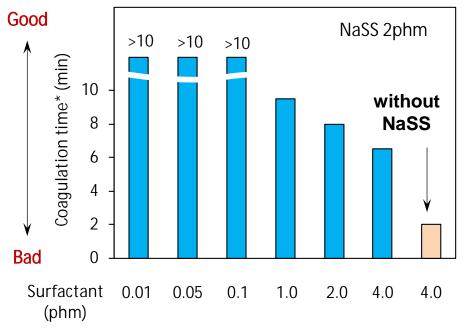
Mechanical stability of emulsion *by agitation at 5,000rpm (Maron test)

Benefits of NaSS: Emulsion Properties

NaSS gives good film-forming property

Sulfonate monomer (phm)		Emulsifier (phm)	Aggregate (%)	Particle diameter (µm)	Mechanical* Stability (min)	Appearance of dry film	Water absorption of film (%)**
None	0.0	4.0	0.90	0.19	2.0	translucent	12.7
NaSS	2.0	4.0	0.01	0.09	6.5	transparent	12.0
AMPS	2.0	4.0	1.48	0.19	2.5	opaque	11.8
SVS	2.0	4.0	4.74	0.20	3.5	translucent	18.3


^{*} Coagulation time by agitation at 5,000rpm (Maron test)


^{**}Immersion of dried-film in water for 48h at RT, film thickness \sim 0.5mm

Benefits of NaSS: Reduction of Surfactant

Excellent colloidal stability is obtained with less surfactant.

Aggregation during polymerization

Mechanical stability of emulsion

*by agitation at 5,000rpm (Maron test)

AmSS

Ammonium Styrene Sulfonate

- 1. Metal-free
- 2. High surface activity
- 3. High reactivity
- 4. Organic solvent soluble
- Higher corrosion resistance compared to NaSS

		I SO₃NH₄ AmSS	I So₃Na NaSS
Registrations			
CAS No.		19922-72-6	2695-37-6
MITI(JAPAN)		3-1948	3-1903
TSCA(USA)		-	Listed
REACH(EU)		-	Registered
ECL(KR)		-	KE-13273
Specification			
Purity	wt%	≧95	≧84
Metal	wt%	< 0.5	11~14
pH of 10wt%aq.		5 ~ 6	10~12
Solubility at 25°C	wt%		
H ₂ O		26.0	21.0
Methanol		13.2	4.4
DMSO		43.9	27.3
NMP		31.0	8.6

Surface Activity

Like NaSS, AmSS demonstrates good compatibility with emulsion polymerization processes

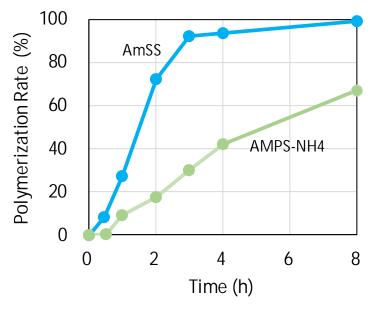
Aqueous solution conc. vs Surface tension

(Wilhelmy method, Pt plate at 25°C)

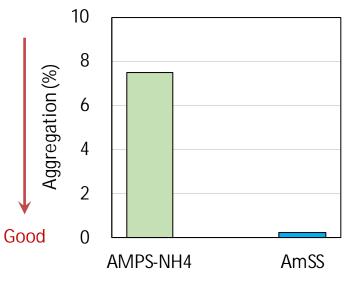
Surfactant-Less Emulsion Polymerization by AmSS

Polymerizes efficiently to high conversion levels.

Styrene/n-Butylacrylate = 1/1 wt.r AmSS or AMPS·NH₄ = 1 mol% DBS·NH₄* = 0.02 mol%/MM Ammonium Persulfate = 0.10 mol%/MM Water (Total MM=34wt%)


Dosed all at once

60°C



*DBS•NH₄

$$C_{12}H_{25}$$
 SO_3NH_4

Time vs. conversion

Aggregation during polymerization

Advantages of Being Metal-free

AmSS enhances the water resistance properties of the coating

< Model Polymer Synthesis >

Monomer

St/n-BA: 50/50wt.r

AmSS(NaSS): 0.5 or 2 mol%

Overall: 48wt%

Initiator V-40 : 1mol%

Solvent : N,N-Dimethylacetamide

Temp.: 90°C×46h Overall conv.: >99%

< Film Preparation >

Substrate : Slide Glass

Dry: 100°C×24h,full vacuum

Thickness: ca.0.15mm

< Water Resistance >

• Immersed in water at 40°C for 25h

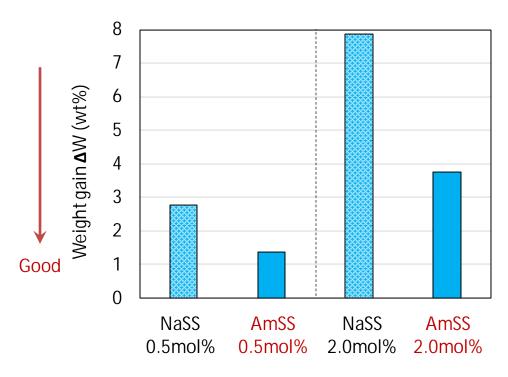


Fig.14 Water absorption of dry film

Contact

BOOTH NO. 26 TOSOH USA Inc.

Tosoh USA, Inc. https://www.tosohusa.com

3600 Gantz Road Grove City, OH 43123

Tel: +1-614-277-4348

Fax: +1-614-875-8066

E-mail: michael.east@tosoh.com

