


CTT Summit (Coatings Trends & Technologies) Lombard, IL, US, September 4th, 2025

# Rheological Optimization of Latex Paints with Balanced Key Coating Properties

Artur Palasz, Ph.D.
Spektrochem Coatings Laboratory, LLC





#### Your speaker



Artur Palasz, Ph.D. Formulation scientist R&D director

#### **Professional background**

- Polymer latex chemist
- Formulating and testing of raw materials for waterborne paints
- ASTM testing



## **Spektr***<u>G</u>***chem Coatings Laboratory, LLC**

- Waterborne Architectural Paint Formulation Development
- Raw Materials Performance Studies
- Independent Lab Services for the **Coatings Industry**
- Research, Consulting, Courses

#### Author of technical articles published by global coating journals





















#### Speaker at international conferences





















## One Paint – Many Painters

- DIYers vs Pros
- Brushes, rollers, sprayers
- Temperature shifts, tint load



One formula must handle all











## Rheology = Workability + Performance

#### **Viscosity**

Low-shear → makes or brakes your open time and leveling (film smoothness)

Mid-shear → where roller drag and flow are decided

High-shear → controls brush feel and spray pattern

#### **Secondary rheological properties**

Sagging 

determines whether paint holds on vertical walls or starts sliding down

Leveling → shows up when rolling on ceilings or walls – clean job or a mess

Tintability → controls whether viscosity stays stabile after tinting

#### **Performance**

Washability → how easily everyday dirt wipes off without dulling the finish

Cleansability 

the "real kitchen test" – greasy Ranch sauce or even late-night pizza

premium paints survive, budget ones surrender



## Our Base System – Eggshell Latex Paint

The core formulation was prepared via a let-down process by combining the all-acrylic binder with pre-prepared pigment and extender slurries containing compatible dispersing agents, defoamers, and preservatives

| Ingredients               | Pounds per<br>100 gallons | Function             |  |
|---------------------------|---------------------------|----------------------|--|
| Let-down                  |                           |                      |  |
| All-Acrylic Polymer Latex | 469.4                     | Binder               |  |
| TiO <sub>2</sub> Slurry   | 260.8                     | Prime pigment        |  |
| Kaolin Slurry             | 208.7                     | Extending filler     |  |
| Nepheline Syenite Slurry  | 121.7                     | Reinforcement filler |  |
| Coalescing Agent          | 15.6                      | Film-forming         |  |
| Water                     | 32.3                      | Dilution/adjusting   |  |
| Rheology Additive         | 3.5                       | Rheology modifier    |  |
| Total:                    | 1,130 lbs                 |                      |  |

#### Formulation contstants:

PVC: 34.6% CPVC: 55.6% Q (PVC/CPVC): 0.62% Volume solids: 42.8% Weight per gallon: 11.3 lbs/gal

Contrast ratio: 97.8% (Drawdown 450 sq.ft/gal)

The resulting paint formed a coating consistent with MPI #52 specifications for gloss level 3 (eggshell finish):

Gloss: 10 – 25 @60°

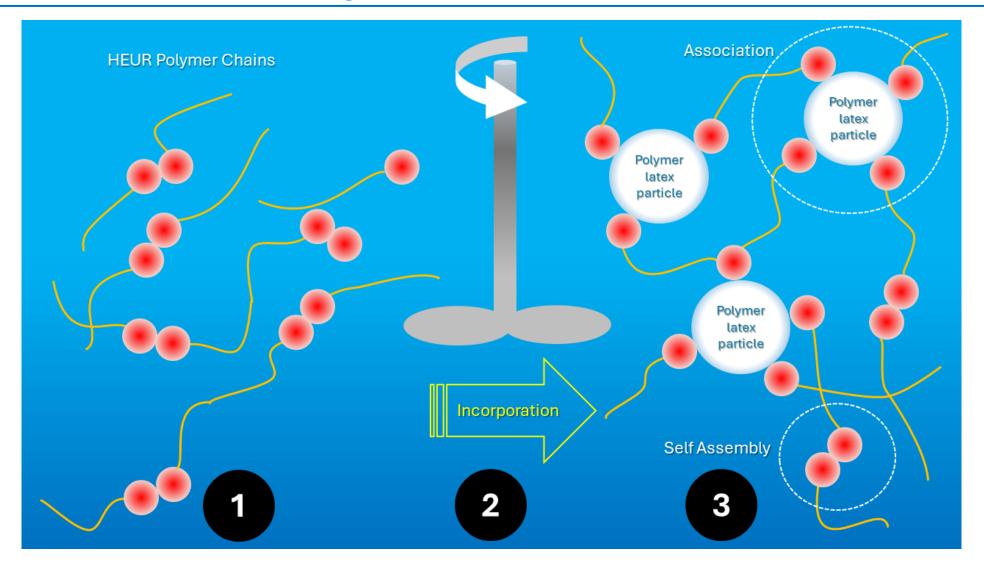
Sheen: 10 – 35 @85°

All test formulations were evaluated in direct comparison to a market-available U.S. interior eggshell paint labeled as REFERENCE EGGSHELL INTERIOR PAINT.





#### **HEUR Thickeners**


Hydrophobically Modified Ethoxylated Urethane (HEUR)
Very effective, nonionic, water-soluble polyurethanes with terminal hydrophobic groups

Chemical backbone (schematic):

- Depending on the chain length, molecular weight, and hydrophobicity, they can be responsible for rheological modification in the full range of shear forces
- Stable over the full pH range
- Depending on the degree of polarity, they are more soluble in water or a mixture, e.g. water/glycol
- They may affect the dirt retention of the coating, color compatibility drift (rub-out), etc.



## **HEUR Thickeners: Thickening Mechanism**





## The Players: HEUR Thickeners

Modifications – layered viscosity building with *HEUR A* – main thickener, *HEUR B* – supplementary thickener

| HEUR T     | <b>Thickener</b> | Active content (as supplied) | Dosage (active on total paint formulation) |
|------------|------------------|------------------------------|--------------------------------------------|
| #1         | А                | 45%                          | 0.086%                                     |
| #1         | В                | 30%                          | 0.035%                                     |
| <b>#</b> 2 | А                | 40%                          | 0.514%                                     |
| #3         | В                | 45%                          | 0.180%                                     |
| #4         | Α                | 30%                          | 0.115%                                     |
| #4         | В                | 45%                          | 0.208%                                     |
| #5         | А                | 40%                          | 0.077%                                     |
| #5         | В                | 45%                          | 0.104%                                     |
| #6         | А                | 17.5%                        | 0.054%                                     |

Thickners incorporation:

- Let-down
- Mixing by anchor stirrer
- Equalization time~20 minutes

<sup>\*</sup> Ambient conditions (lab environment): 73.5 °F  $\pm$  3.5 °F





The target Stormer viscosity for all formulations was set in the range of **90–110 KU** (after 1 week equilibration\*).

#### Tools & Methods



#### **ASTM-Backed Measurements**

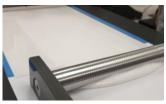


Low-Shear Viscosity
Brookfield HA DVIII with disc spindles
ASTM D2196 method A
Measurement at 73 °F



Mid-Shear Viscosity
Byko-visc Digital Stormer Viscometer
ASTM D562 method B (paddle spindle)
Measurement at 73 °F




High-Shear Viscosity
BYK CAP 2000+L (cone & plate)
ASTM D4287, shear rate 12,000 s<sup>-1</sup>
Measurement at 75 °F



Spattering Test
Notch spool roller
ASTM D4707
Automatic drawdown

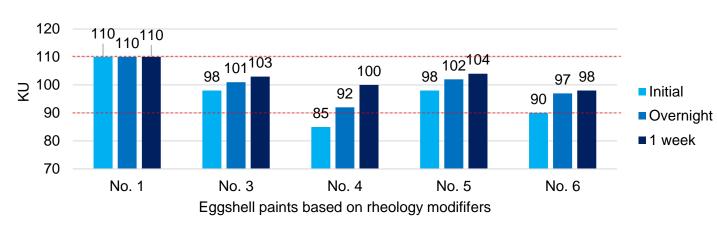


Sag Test
Leneta Anti-Sag Meter ASM-4 (4 – 24 mils gaps)
ASTM D4400
Automatic drawdown, pre-shearing

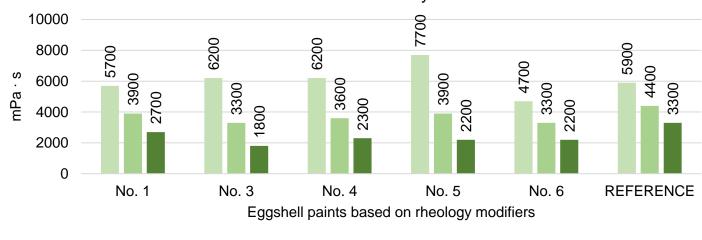


Leveling
Leneta LTB-2 Logicator
ASTM D4062
Automatic drawdown, pre-shearing




Tintability (Viscosity Stability + Rub-Out)
Colorant (liquid pigment concentrate)
Determination of ΔKU and color acceptance
ASTM D562, ASTM D2244



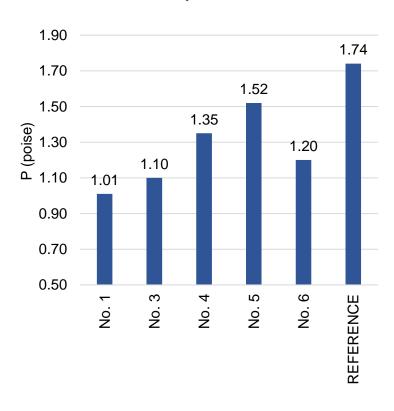

Washability / Cleansability
Scrub/washability tester
ASTM D3450 / ASTM D4828
Standard soilant / daily stains (kitchen + kids)

## Low-Shear, Mid-Shear vs. High-Shear: Balance is Everything





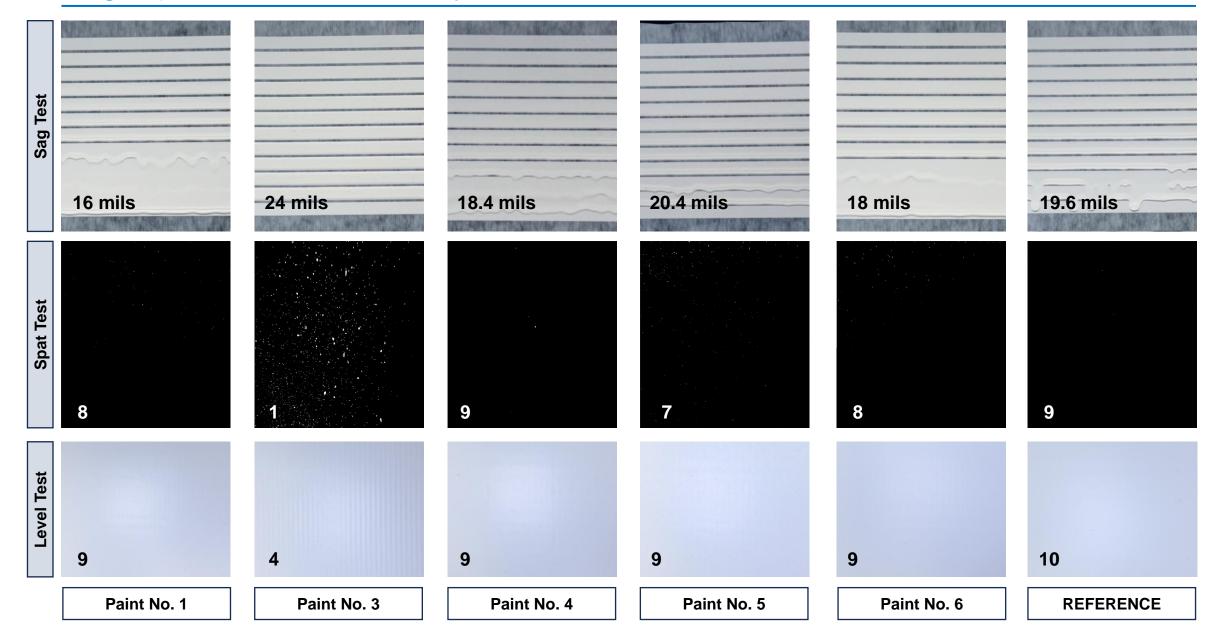
#### **Brookfield Viscosity**




■ 20 rpm ■ 50 rpm ■ 100 rpm

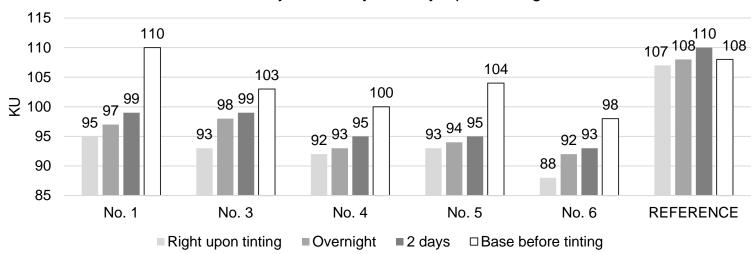
#### Eggshell Reference Paint: 108 KU

(on the day of measurement of the remaining samples)


ICI Viscosity at 12,000 s<sup>-1</sup>






## Sag, Spat, Level – Paint Beyond the Can





## Tintability and KU Stability



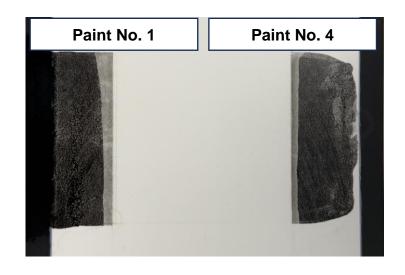


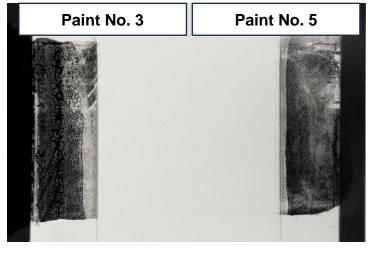


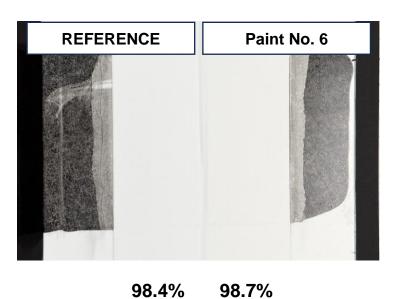


Colorant: Liquid Pigment Concentrate

PBk7 (Carbon Black)


Tinting: 5 fl.oz./gal


Shaking: 2 minutes




## Washability

Percentage Reflectance Recovery and Assessment of Coating Erosion (after 4 x 25 Washability Cycles)







| 98.9%          | 99.2%   |  |  |
|----------------|---------|--|--|
| No             | No      |  |  |
| <b>Erosion</b> | Erosion |  |  |

99.4% 99.2%

No No
Erosion Erosion

No No Erosion Erosion





- 1 Maple Joe (Maple Syrup)
- 2 Espresso Coffee (Lavazza T!erra)
- 3 Merlot Calofornia Red Wine
- 4 Heinz Beanz BBQ (canned beans)
- 5 Iodine
- 6 Simply Orange Juice



- 1 Heinz Ketchup
- 2 Heinz Yellow Mustard
- 3 Jak Daniels BBQ Sauce
- 4 McInheny Tabasco
- 5 Tomasto Paste
- 6 Hidden Valey Ranch
- 7 A1 Sauce



- 1 Hershey Chocolate Syrup
- 2 Nutella
- 3 Reese's Peanut Butter
- 4 Color pencil

- 5 Crayon
- 6 Pen
- 7 Permanent Marker
- 8 Lipstick



## Final Rheology Target Profile

Compared to the reference paint, the following conclusions were drawn regarding the obtained rheological parameters and coatings performance

| Paint based on thickener | Brookfield<br>Viscosity | Stomer<br>Viscosity | ICI<br>Viscosity | Spattering | Sagging | Leveling | Tint<br>viscosity<br>stability | Stain resist<br>+<br>washability |
|--------------------------|-------------------------|---------------------|------------------|------------|---------|----------|--------------------------------|----------------------------------|
| #1                       | ***                     | ***                 | *                | ***        | *       | **       | *                              | **                               |
| #3                       | ***                     | ***                 | *                | *          | ***     | *        | *                              | **                               |
| #4                       | ***                     | ***                 | *                | ***        | **      | **       | *                              | **                               |
| #5                       | ***                     | ***                 | *                | **         | **      | **       | *                              | **                               |
| #6                       | ***                     | ***                 | *                | **         | **      | **       | *                              | <b>*</b> *                       |

**<sup>★</sup>** To be improved ★ ★ Good enough ★ ★ ★ Very good



## Next steps

Modifications to improve high-shear viscosity (ICI area) and tint viscosity stability (Stormer viscosity)

| Paint based on thickener | ICI thickener | Dosage* | Tint viscosity stabilizer | ICI Viscosity<br>at 12,000 s <sup>-1</sup> | KU Viscosity upon tinting |
|--------------------------|---------------|---------|---------------------------|--------------------------------------------|---------------------------|
| #4                       | Α             | 0.05%   | 0.3%                      | 1.56 P                                     | 2 KU drop                 |
|                          |               | 0.15%   | 0.3%                      | 1.80 P                                     | 1 KU drop                 |
|                          | В             | 0.05%   | 0.3%                      | 1.42 P                                     | 6 KU drop                 |
|                          |               | 0.15%   | 0.3%                      | 1.78 P                                     | 3 KU drop                 |
|                          | С             | 0.20%   | 0.3%                      | 1.70 P                                     | 2 KU drop                 |
|                          | D             | 0.13%   | 0.3%                      | 1.75 P                                     | 2 KU drop                 |
|                          | Е             | 0.08%   | 0.3%                      | 1.82 P                                     | 1 KU drop                 |
| Reference                |               |         |                           | 1.74 P                                     | 1 KU drop                 |

<sup>\*</sup>active substances calculated on total formulation



## Summary

When selecting HEUR thickeners you can't just chase a KU number or a smooth viscosity curve. You need to look at *the whole picture*.

- Start with *the viscosity profile* across shear rates low shear keeps the paint from sagging, mid shear defines roller feel, and high shear controls brush drag and sprayability.
- Then look at *the secondary rheological properties* does the HEUR balance spatter, sagging and leveling, or does it solve one problem but create another?
- Finally, never forget *coating performance* some HEUR systems can soften the film, reduce scrub resistance or hurt cleanability. The best combinations support stain removal, gloss retention and long-term durability.

#### The real key is balance:

The right HEUR is not just the one that hits the KU target, but the one that delivers a paint that rolls smoothly, resists sagging, levels beautifully, and still lets you wipe off BBQ sauce, peanut butter or red wine without ruining the finish.









## Thank you for your attention More to discuss?

E-mail: <u>artur.palasz@spektrochem.pl</u>





