

SOYNEWUSES.ORG

Advancing Sustainable Coatings with U.S.
Soybean Oil
Renewable Solutions for Coating Manufacturers

OMNITECH

STRATEGIC SUSTAINABLE SOLUTIONS

Kris Weigal

USE SOY FOR THAT

SSOY

AGENDA

- UNITED SOYBEAN BOARD INTRODUCTION
- SOY: GLOBAL AND US SUPPLY
- SOY BUILDING BLOCKS
- SOY COATING MATERIALS
- PERFORMANCE TESTING OF COMMERICALLY AVAILABLE SOY COATING MATERIALS

The United Soybean Board

Builds demand to ensure strong, profitable future for U.S. Soybean farmers

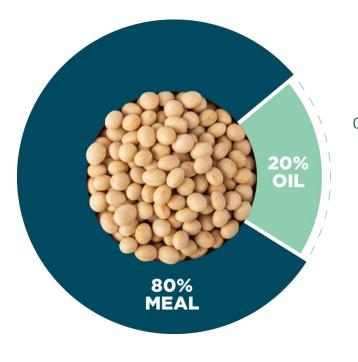
- Represents over 515,000 U.S. soybean producers in 31 states
- There are 77 farmer directors
- Promotes sustainability of U.S. Soy farming
 The budget supports research, promotion and education investment portfolios selected through USB's Portfolio Development Process
- Checkoff contributions of 0.5 % of the net market price per bushel sold
- The USB approved a program budget of \$173.8 M for FY25

FOOD + FUEL AND CHEMICALS

WITH U.S. SOY YOU GET BOTH FOOD AND FEEDSTOCKS

MEAL

95.34% Animal feed


3.72% Human consumption

0.50% Aquaculture

0.43% Industrial

42.7% Human consumption

47.9% Fuel

9.5% Industrial

Source: Market View Database MY23/24 - 2025

SSOY

"Soybean meal is the main source of feed protein worldwide"

Dr. Rouf M. Mian, acting research leader of the Soybean Research Unit, USDA – ARS and research geneticist at North Carolina State University

SOY IS A GLOBAL PRODUCT

10 Year Average MY 2015-2024

363.97 Million Metric

Tons

10-Year Compound Average Growth

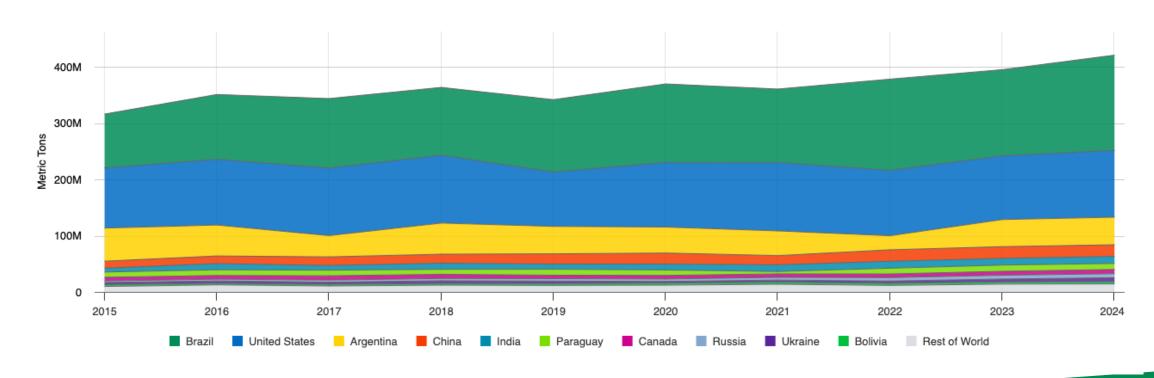
3% MY 2015-2024

2023/2024

Production

394.97 Million Metric

Tons


2024/2025 Production

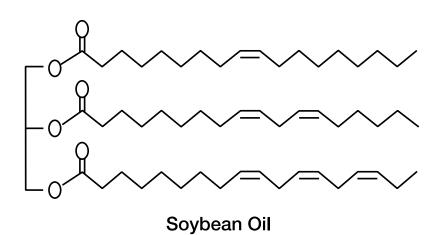
420.76 Million Metric

Tons

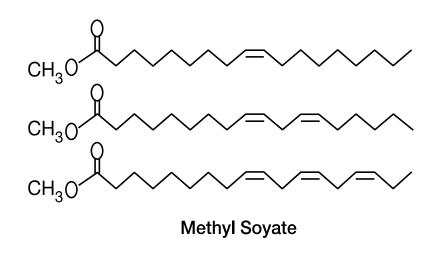
Year over Year % Change

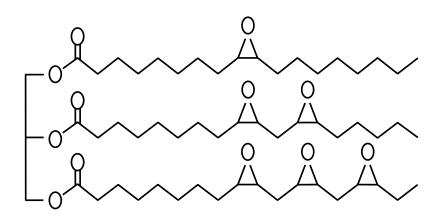
7%

ABUNDANT SUPPLY OF U.S. SOY: 2024-25


267.6 B Pounds of Soybeans 28.6 B Pounds of Soybean Oil

113.9 B Pounds of Soybean Meal





BASIC SOY OIL BUILDING BLOCKS

Epoxidized Soybean Oil

Commercially Available

$$CH_3O \longrightarrow \bigcirc$$

Epoxidized Methyl Soyate

Soy Materials in Coatings

Soy Fatty Acid

Hydrocarbon Resins

Solvent borne

Acrylic Dispersions

Resin Emulsions

Powder Coating Resins

Soy Polyols

UV Cure Oligomers

Soy Materials in Coatings

Solvents

Wax Emulsions

Wetting-Dispersing Aids

Coalescents

Plasticizers

Pigment Dispersions

USB FUNDED PROJECT

(2321-106-0101, 2421-106-0101, 25-106-D-A-1-A)

- Test commercially available soy vs. petro-based coating materials
- Demonstrate effectiveness
 - ✓ Real world formulations
 - ✓ Key performance properties
 - ✓ Optimize soy formulations and compare to commercial coatings
- Share results with coatings industry
 - ✓ Raw material suppliers-coating manufactures-end users
- Key materials
 - ✓ Coalescing Solvents for water-based architectural and industrial paints (PCI April & Sept 2024)
 - ✓ Alkyd emulsions for water-based architectural paints and wood stains
 - ✓ Solvents for alkyd, epoxy & urethane industrial paints and wood coatings
 - ✓ Wax emulsions for outdoor wood stains
 - ✓ Pigment dispersants for solvent-based industrial paints
 - ✓ Soy Polyols for 2K polyurethane and melamine coatings

Part 2. Waterbased Soy-Alkyd Emulsions

Architectural Semi-Gloss Trim Enamels

- Soy-based Long Oil Alkyds (55-70% Soy Oil)
- Soy-based Medium Oil Alkyds (40-55% Soy Oil)
- Soy-based Short Oil Alkyds (<40% Soy Oil)
- Acrylic-modified Alkyds
- Resins 50-60% NV in Water
- Semi-gloss Paints ~35-40% Resin

Waterbased Soy-Alkyd Emulsions

Semi-Gloss Trim Enamels

Petroleum-Based	Bio-renewable
Commercial Latex Resins	WB Soy Alkyd Dispersions
Latex 1 – 100% Acrylic	SA-1 – Medium oil alkyd emulsion
50% NVW, MFFT 17°C	55% NVW
Latex 2 – Acrylic Copolymer	SA-2 – Acrylic alkyd emulsion
50% NVW, MFFT 14°C	60% NVW
	SA-3 – Short oil alkyd emulsion 50% NVW
	SA-4 – Long oil alkyd emulsion 55% NVW

% PVC	23
% Weight Solids	45
VOC (g/L)	0

Latex 1 & 2 same as coalescent study with P1 coalescing solvent

Waterbased Soy-Alkyd Emulsions

Semi-Gloss Trim Enamels

SA-2 – Alkyd acrylic

SA-3 – Short oil alkyd

SA-4 – Long oil alkyd

Note: Formulations not optimized.

WB Soy Alkyd Semi-Gloss Trim Enamels – Bio vs Petro

- = Adhesion
- = Application
- + Appearance
- = Hardness
- + Block Resistance
- + Dirt Pick-Up
- = Weather Resistance
- + Package Stability

- Improved block and dirt pick up resistance
- Formula optimizations
- Blend with latex

Part 3. Waterbased Soy Resin Emulsions

Exterior Wood Deck Stains & Sealers

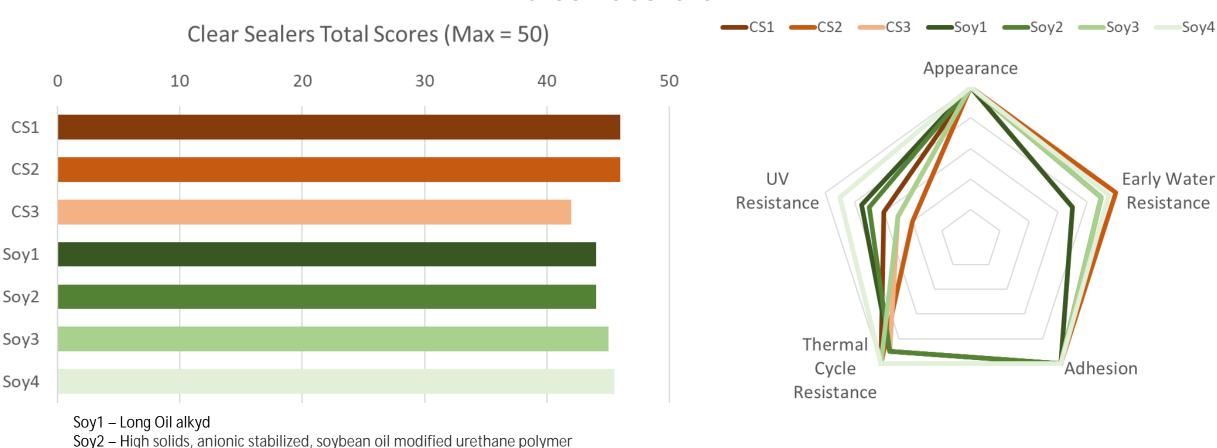
- 3 Commercial benchmark products
- 6 Soy stain & sealer formulations
- Over treated pine & cedar deck boards
- Properties
 - Appearance
 - Adhesion
 - Early water resistance
 - Scuff resistance
 - Thermal cycle resistance
 - UV resistance

Exterior Wood Deck Stains & Sealers

Commercial Benchmarks (CS – Clear Sealer, S – Stain)	Bio-renewable WB Soy Alkyd Emulsions
CS1 & S1 – WB clear and semi-transparent stain (Acrylic)	Soy1 – Long oil alkyd emulsion 55% NVW
CS2 & S2 – WB clear (Acrylic) and semitransparent stain (Alkyd)	Soy2 – Oil modified urethane emulsion 45% NVW
CS3 & S3 – WB clear (Alkyd) and semitransparent stain (Acrylic)	Soy3 – Acrylic alkyd emulsion 45% NVW
	Soy4 – Hydrocarbon resin emulsion 67% NVW

Exterior Wood Deck Stains & Sealers

- 4 WB soy clear sealer & stain formulations
- 3 Commercial benchmarks
- Over treated pine & cedar

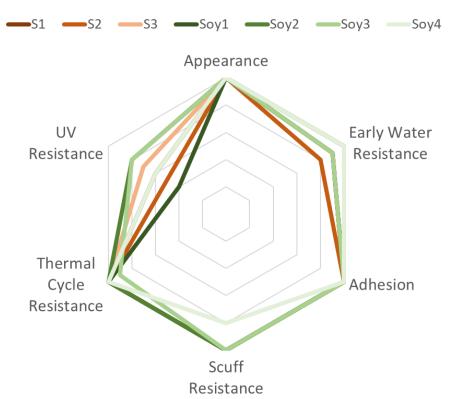


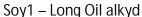
% Weight Solids	26.3
% Volume Solids	24
Density	8.54
VOC (lb/gal)	0
VOC (g/L)	0.09

Description	Weight (Lbs)	Volume (Gals)
Deionized Water	295.56	35.43
Rheology Modifier	4.32	0.65
Defoamer	3.01	0.35
Buffer	0.86	0.11
Surfactant	1.31	0.17
Deionized Water	120.63	14.46
Soy Alkyd Emulsion	276.49	31.43
Freeze-Thaw Stabilizer	4.43	0.51
Cobalt-Free Drier	2.95	0.34
Soy Wax Emulsion	113.89	14.07
Transparent Yellow Oxide	16.63	1.39
Transparent Red Oxide	2.39	0.19
Transparent Burnt Umber	7.82	0.59
Transparent Raw Umber	3.71	0.30
Totals	854	100

Exterior Wood Deck Stains & Sealers

Clear Sealers

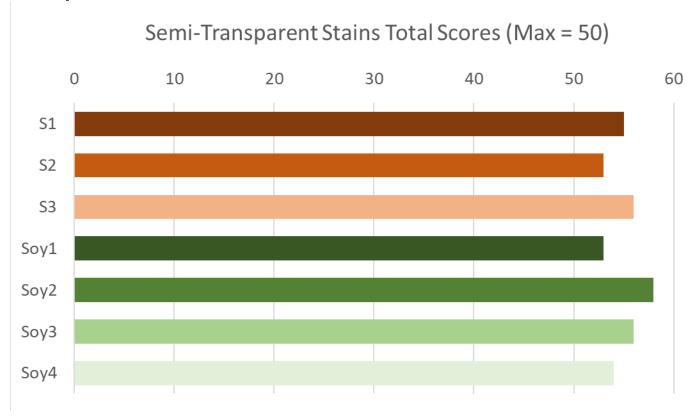



Soy3 – Acrylic modified alkyd resin emulsion

Soy4 – Low molecular weight C9 hydrocarbon resin modified with soy

Exterior Wood Deck Stains & Sealers

Semi-Transparent Stains



Soy2 - High solids, anionic stabilized, soybean oil modified urethane polymer

Soy3 – Acrylic modified alkyd resin emulsion

Soy4 – Low molecular weight C9 hydrocarbon resin modified with soy

WB Soy Exterior Wood Deck Stains & Sealers

- = Appearance
- = Adhesion
- + Early Water Resistance
- = Thermal Shock Resistance
- + UV Resistance

45% by volume soy-based raw materials comparable to petroleum-based commercial benchmarks

Part 4. Waterbased Soy Resin Emulsions

Interior Wood Stains & Clears

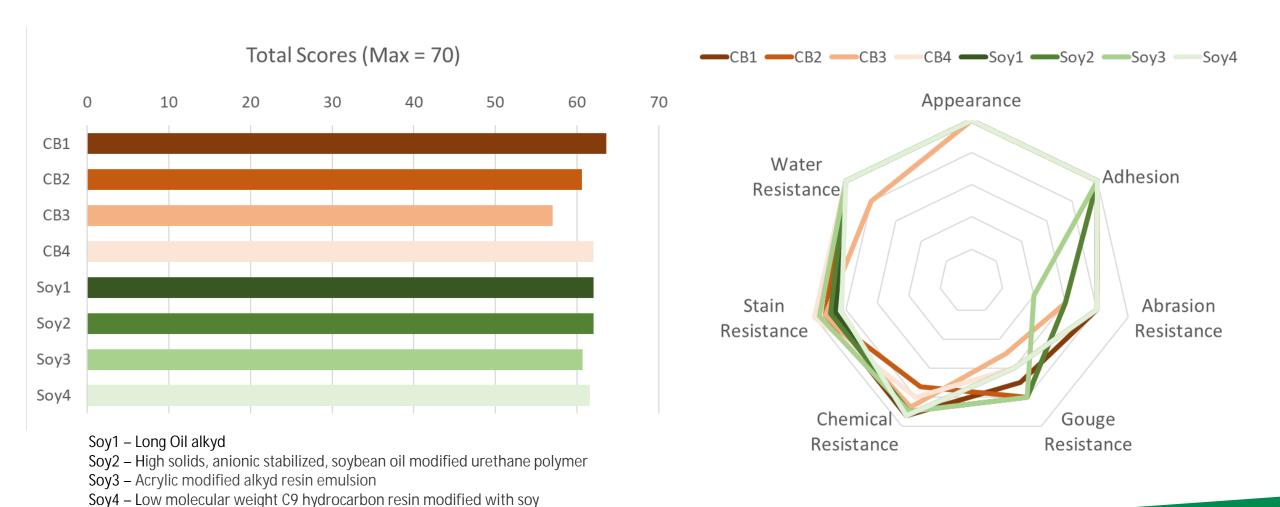
- 4 Commercial benchmark products
- 4 Soy semi-gloss clear & stain formulations
- Over red oak trim boards
- Properties
 - Appearance
 - Adhesion
 - Wear resistance
 - Chemical & stain resistance
 - Water resistance

Interior Wood Stains & Clears

Commercial Benchmarks	Bio-renewable WB Soy Alkyd Emulsions
CB1 – WB Combination stain & satin clear in one product (Acrylic)	Soy1 – Long oil alkyd emulsion 55% NVW
CB2 – WB Stain with semi-gloss clear topcoat (Acrylic)	Soy2 – Oil modified urethane emulsion 45% NVW
CB3 – WB Stain with semi-gloss clear topcoat (Acrylic)	Soy3 – Acrylic alkyd emulsion 45% NVW
CB4 – SB Stain with semi-gloss clear topcoat (Alkyd stain, Acrylic topcoat)	Soy4 – Hydrocarbon resin emulsion 67% NVW

Interior Wood Stains & Clears

- 4 WB soy semi-gloss clear & stain formulations
- 4 Commercial benchmarks
- Stain + clear over red oak, 7 days min dry



% Weight Solids	25
% Volume Solids	24
Density	8.45
VOC (lb/gal)	0
VOC (g/L)	0.09

Raw Material	Weight (Lbs)	Volume (Gals)
Deionized Water	303.29	36.30
Rheology Modifier	4.44	0.66
Defoamer	3.09	0.36
Buffer	0.88	0.11
Surfactant	1.34	0.17
Deionized Water	123.79	14.83
Soy Alkyd Emulsion	283.73	32.23
Freeze-Thaw Stabilizer	4.55	0.53
Cobalt-Free Drier	3.03	0.35
Soy Wax Emulsion	<u>116.87</u>	<u>14.40</u>
Totals	845	100

Stains made with a blend of transparent iron oxides & umbers (2.3% PVC)

Interior Wood Stains & Clears

WB Soy Interior Stains & Clears – Bio vs Petro

- = Appearance
- = Adhesion
- = Abrasion & Gouge Resistance
- = Chemical & Stain Resistance
- = Water Resistance

46% by volume soy-based raw materials comparable to petroleum-based commercial benchmarks

Part 5. VOC Reduction with Soy Solvents

Interior Solvent-based Semi-Gloss Wood Floor Coatings

3 VOC Limits Nationwide

- 450g/L Federal EPA
- 350g/L OTC Phase I
- 275g/L CARB & OTC Phase II

PCBTF solvent used to reduce VOC – problems:

- Toxic, carcinogen (CA Prop 65)
- Banned in Europe and some US states (Toxic Air Contaminant lists)
- CA to phase out PCBTF in auto-refinish by 2030
- Not domestically sourced

Interior Solvent-based Semi-Gloss Wood Floor Coatings

Can soy solvents be used to replace PCBTF?

6 Commercial benchmark wood floor topcoats (Multiple VOCs)

10 Semi-gloss clearcoat formulations

- 2 Soy oil modified polyurethane resins (OMUs)
- Odorless mineral spirits (OMS) > VOC limit
- 4 partial OMS replacements to reduce VOCs to compliance
 - PCBTF
 - 3 different soy solvents

Interior Solvent-based Semi-Gloss Wood Floor Coatings

	Label
	VOC (g/L)
Commercial Benchmark 1	< 350
Commercial Benchmark 2	< 450
Commercial Benchmark 3	< 450
Commercial Benchmark 4	< 550
Commercial Benchmark 5	< 450
Commercial Benchmark 6	< 275

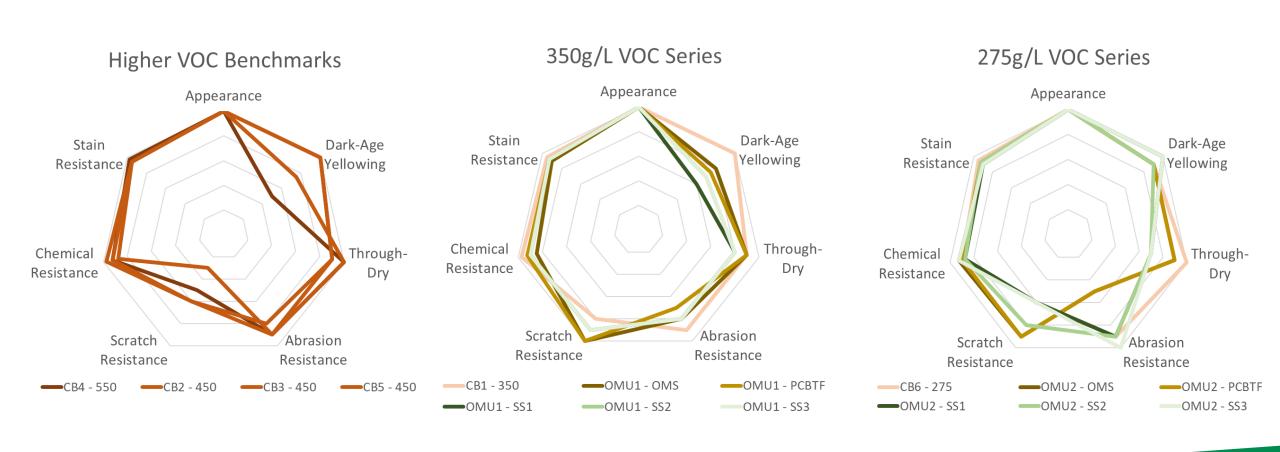
Interior Solvent-based Semi-Gloss Wood Floor Coatings

	ON	1U1	OM	1U2
Raw Material	Weight (Lbs)	Volume (Gals)	Weight (Lbs)	Volume (Gals)
Soy Oil Modified Urethane	609.02	79.09	598.80	74.48
OMS	108.58	17.12	109.38	17.25
Cobalt-Free Drier	7.41	1.01	8.36	1.14
MEKO-Free Anti-skinning Agent	5.48	0.69	6.21	0.78
Soy Solvent	<u>16.46</u>	<u>2.08</u>	<u>50.20</u>	<u>6.35</u>
Totals	747	100	773	100
% NVW	58	3.8	63	3.9
% NVV	52	2.3	57	7.8
Density	7.	47	7.	73
VOC (lb/gal)	2.	91	2.	29
VOC (g/L)	3	49	2	75

10 Clearcoats Total

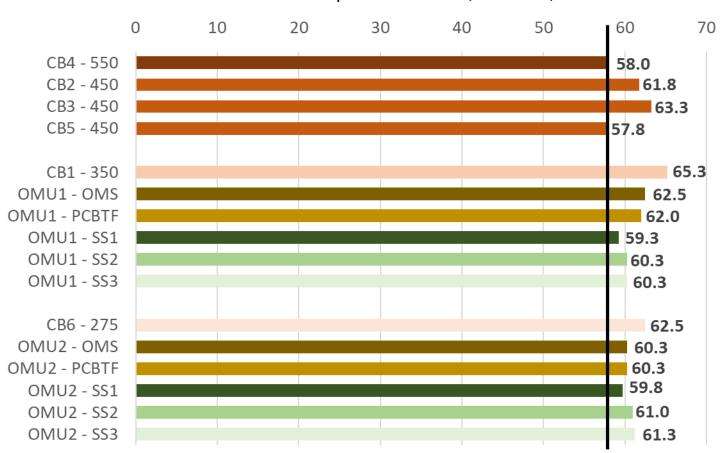
	OMU1	OMU2
	Series	Series
Solvent	VOC (g/L)	VOC (g/L)
100% OMS	367	330
w/ PCBTF	350	275
w/ Soy Solvent 1	350	275
w/ Soy Solvent 2	350	275
w/ Soy Solvent 3	350	275

Red oak & maple boards 220 grit sanding 3 coats with overnight dry in between coats


Interior Solvent-based Semi-Gloss Wood Floor Coatings

(16 Topcoats Tested)

- Dry Times
- Appearance
- Yellowing Upon Exposure to Darkness
- Abrasion Resistance
- Scratch Resistance


- Chemical Resistance
 - Boiling water
 - Ethyl acetate
 - Vinegar
 - Windex (ammonia)
- Stain Resistance
 - Coffee
 - Mustard
 - Olive oil
 - Red wine

Interior Solvent-based Semi-Gloss Wood Floor Coatings

Interior Solvent-based Semi-Gloss Wood Floor Coatings

Wood Floor Topcoat Scores (Max=70)

Higher VOC Benchmarks (>450g/L)

350g/L VOC Series

275g/L VOC Series

Interior Solvent-based Semi-Gloss Wood Floor Coatings

Higher VOC Benchmarks

- Poor scratch resistance
- Some dark yellowing

350g/L VOC Series

- Soy OMU--Better scratch resistance
- CB1 best overall
- Soy solvents vs PCBTF
 - Slight improvement in abrasion resistance
 - Slight loss in dry time and dark yellowing

275g/L VOC Series

- Soy OMU--Better scratch resistance
- CB6 best overall
- Soy solvents vs PCBTF
 - Significant improvement in abrasion resistance
 - Loss in dry time and slightly less scratch resistant

Interior Solvent-based Semi-Gloss Wood Floor Coatings

- ✓ VOC Reduction
- ✓ Non-carcinogenic
- ✓ HAPs-free
- ✓ Approach Comparable Performance
- ✓ Deficiencies may be improved through formula optimization

Duplicate assessment with satin finish wood floor topcoats & expand to Industrial Maintenance Coatings

SUMMARY:

Reduce Your Carbon Footprint with U.S. Soy

- Renewable, biobased carbons
- Abundantly available U.S.
- Diversity of applications
 - Enables chemistries for high performance applications
 - Low EH&S impact and VOCs
- Economical

Kris Weigal Omni Tech International 330Y

708-625-7071 kweigal@omnitechintl.com Table Top #57

OMNITECH
STRATEGIC SUSTAINABLE SOLUTIONS