High Molecular Weight Silicone Emulsions: Preparation, Properties, and Applications

CHT USA – Brian Mulhern – Senior Research and Development Chemist

Sink or Swim 2023

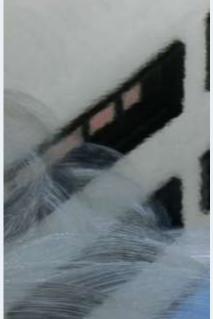
OVERVIEW

- Chemistry and properties of silicone polymers
- Silicone emulsions and stability
- High molecular weight silicones and gums
- Applications and emulsification of silicone gums
- New advancements in silicone gum emulsions

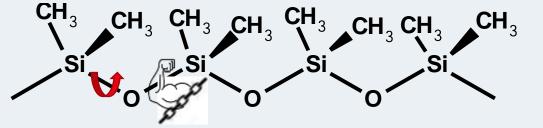
3

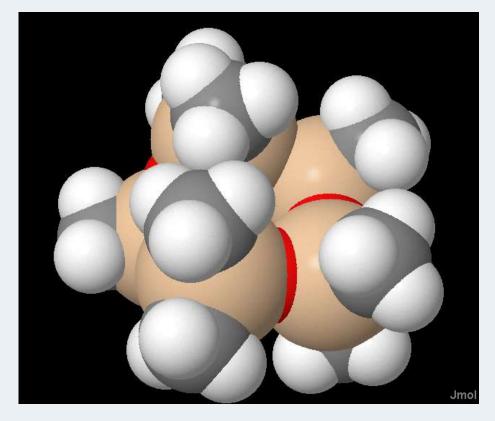
Brief Description of Silicone Material Classes

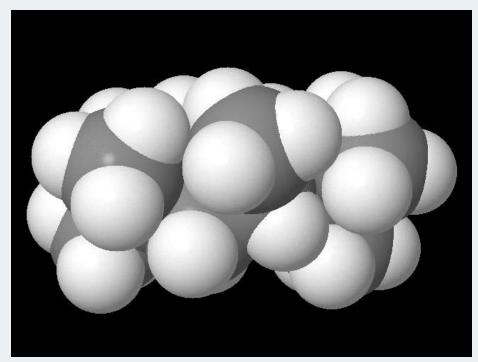
- Linear silicone (volatile to non-volatile) polydimethylsiloxane (PDMS) 0.65 - 1,000,000 cSt
- Ultrahigh MW PMDS (gum) ~20MM cSt 'dimethiconol'
- Silicone resins network ceramic/dimethyl solids trimethylated silica
- **Organic -modified silicones** -Silicone glycols alkane modified silicone; amine modified silicones
- Silica-silicone compounds food and cosmetic grade antifoams -'simethicone'
- Silicone quats charged quaternary amines on silicone backbone
- **Silicone Crosspolymers** dispersion of crosslinked silicone in a carrier

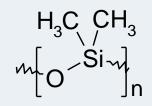


Inti-Adir

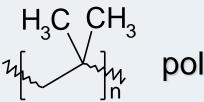








SILICONE UNIQUENESS Long, Strong Intramolecular Bonds...Weak Intermolecular Bonds

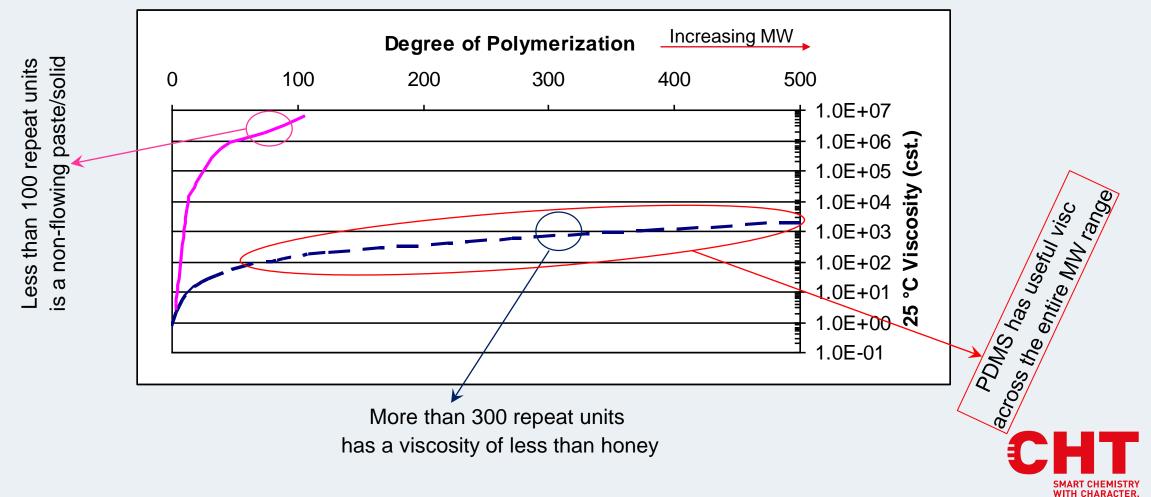


polydimethylsiloxane

Brian Mulhern

Impact of Free Space, Easy Rotation and Weak Attraction on Useful Properties

- Highest oxygen permeability of any polymer
- Combined with bio-inertness permits high safety and compliance –food grade possible
- Low rotational energy gives low energy conformations on surfaces –excellent surface modification flow properties
- Low surface tension (easy spreading) little goes a long way in surface coverage
- Smooth, ultra low friction modifying
- ► Hydrophobic
- Thermal Stability


Silicone vs Organic Polymers

Property	H ₃ C CH ₃ H ₁ , H ₁ , H ₁ ,	$H_{3}C_{I}CH_{3}$ $H_{0}Si_{n}OH$
Form	Amorphous	Amorphous
$T_{g}(^{\circ}C)$	-70	-123
Density (g/cc)	0.92	0.97
Fractional Free Volume	0.026	0.071
Permeability to O_2 (cm ³ cm/(cm ² s cm Hg))	0.081	60
Critical Surface Tension (mN/m)	33	22
Viscosity (n~10) (cSt)	570	6.5
Viscosity (n~100) (cSt)	5,000,000	140

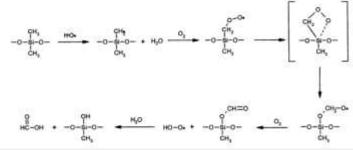
PDNS VS PIB

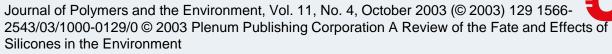
Impact of Increasing Chain Length in PDMS and PIB

Brian Mulhern

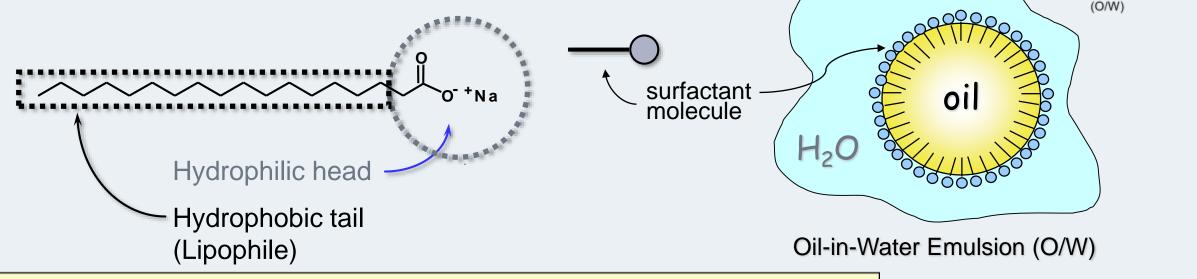
WHAT HAPPENS TO SILICONE IN THE ENVIRONMENT?

Quartz Sand


Typical degradation time: <30 days


Brian Mulhern

Evaporation and degradation in the atmosphere

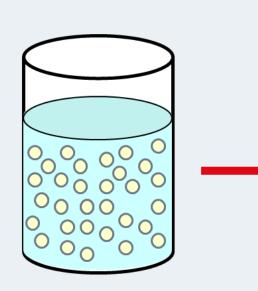


Emulsion Basics

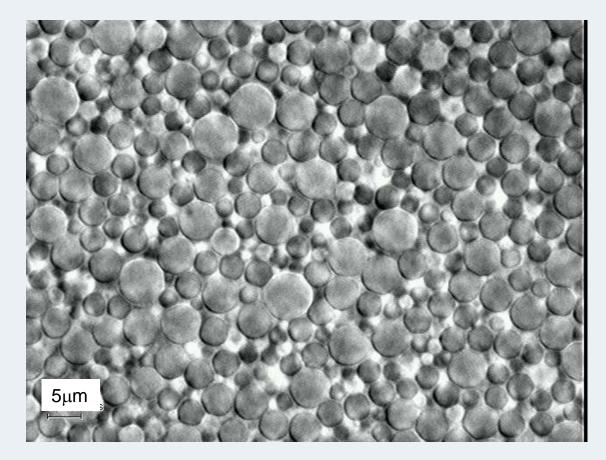
Emulsion: A dispersion of one immiscible liquid in another, usually stabilized by a <u>surface active agent.</u> **Surfactant:** A substance which tends to reduce the surface tension of a liquid in which it is dissolved.

Surfactants are amphipathic, act as barriers

Three main types of surfactants: Nonionic, Cationic, and Anionic


Type of surfactant used imparts certain properties to the emulsion.

In case of multiple surfactant types, the emulsion takes its type from the "**more critical**" surfactant used (i.e., nonionic + anionic = anionic emulsion.)



Oil in Water Emulsion

Oil in Water Emulsion

Oil in Water Emulsion (O/W)

Optical micrograph by Jennifer Stasser

How Various Types of Emulsions are Made

High Shear Processing aka "Mechanical Emulsions"

Mix oil, H₂O, surfactant; subject mixture to high shear.

Mechanical emulsions is a broad term which captures various methods of high shear processing.

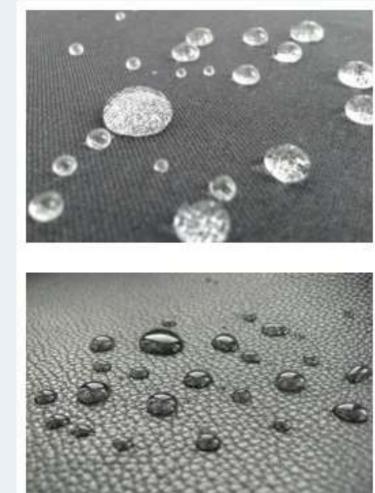
Emulsion Polymerization (EP):

Subject polymerizable monomer, H₂O, & surfactant to high shear; carry out polymerization of monomer. Useful with hydrophobic polymerizable monomers.

Think of each particle in this emulsion of being a micro-reactor

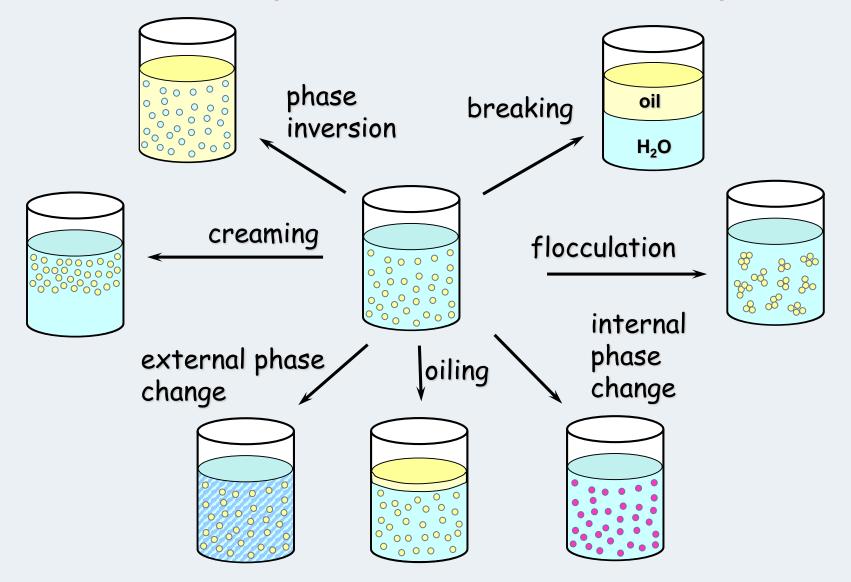
Microemulsion:

Emulsions < 100nm; spontaneously formed emulsions. Don't require shear forces. Thermodynamically stable.

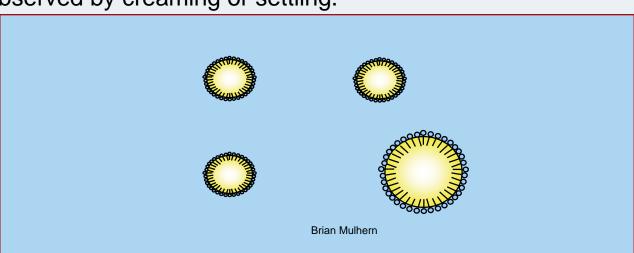


Controlling Emulsion Stability

Most emulsions are thermodynamically unstable. They will eventually separate.


Factors which influence emulsion stability

- Type and level of emulsifier/surfactant/dispersant
- Particle size and distribution
- External destabilizing conditions (shear, freeze/thaw, temp.)
- Density difference and interfacial tension between the two phases
- Viscosity of external phase


The Many Faces of Instability

Particle Size Affects Emulsion Stability

- Emulsion particles are in constant motion thanks to Brownian Motion! These particles carry energy and constantly collide with one another.
- Each particle has a barrier, in the form of surfactant (ionic stabilization and steric stabilization), to prevent particles from coalescing as they collide.
- Larger particles carry more energy (momentum) than smaller particles. If sufficient momentum is achieved, it can penetrate the particles "barrier" thus beginning the process of flocculation/coalescence.
- Gravitational force also affects emulsions as the particles tend to segregate in emulsions this can be observed by creaming or settling.

Particle Size Affects Rheology Properties

- Viscosity of dispersed phase has no influence of emulsion viscosity.
- Emulsion rheology depends upon how particles interact with each other.
- Higher solids content leads to higher viscosity emulsions. More particles are interacting with each other.
- Smaller particle sizes lead to higher viscosity emulsions. Higher surface area, lower volume
- Not only does the particle size dictate the rheology profile, but the particle size distribution also plays a large role.

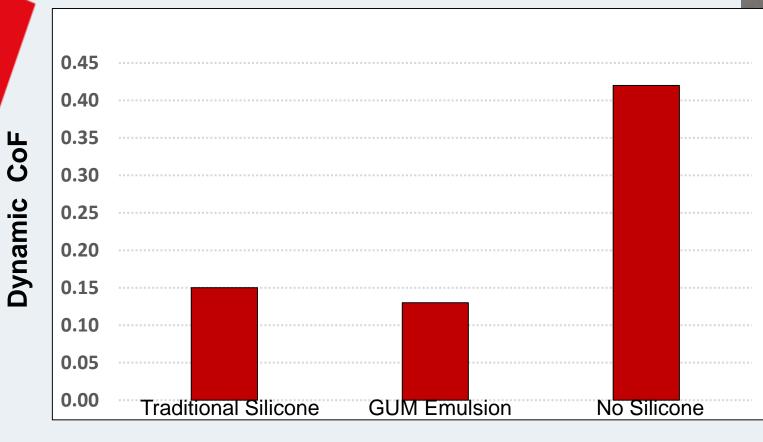
SILICONE GUM

initial

1 hour

24 hours

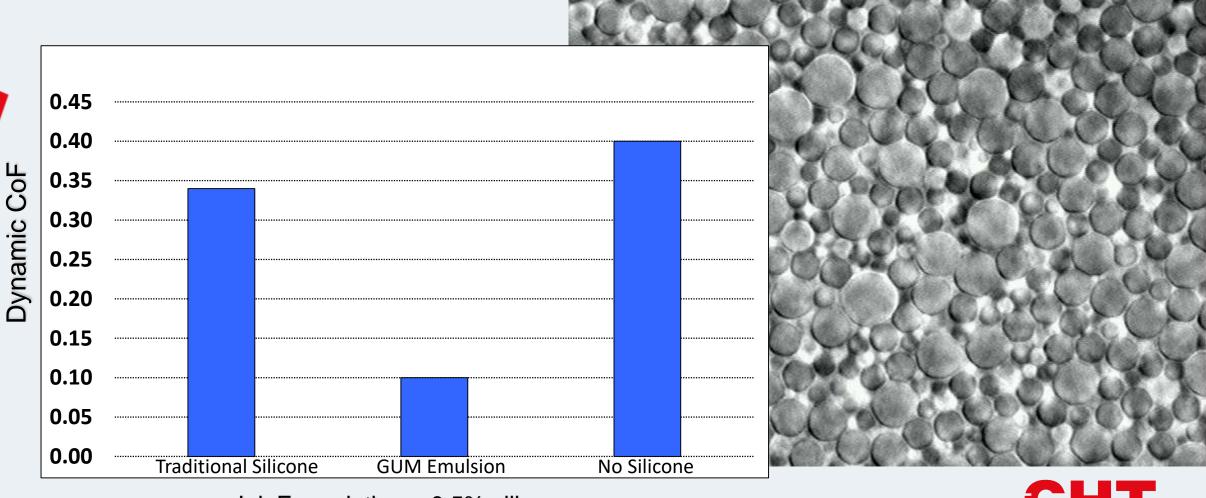
- Silicone gum High MW linear polydimethylsiloxane (PDMS) having a
 - Viscosity on the order of 20M cP (20K Pa-sec)
 - > DP of about 3,500 and higher
 - ▶ Mn ~260,000
- Usually SiOH terminated, also Me3SiO- (methyl) and H2C=CH- (vinyl) groups
- > Silicone gum emulsions for slip additives usually are made of SiOH terminated polymer.



SILICONE GUM EMULSIONS

- Silicone gum emulsions find great utility as slip additives in coatings.
- Very high MW PDMS (eg- silicone gum) has become preferred slip additive in numerous coating applications.
 - Leather coatings Also used to modify haptic properties including the hand (feel) of leather surfaces.
 - > Printing Inks and overprint varnishes
 - Solvent resistance
 - Provide gloss
- Silicone gum emulsions provide block resistance to many coatings, including leather coatings, inks and overprint varnishes.
- Silicone gum emulsions are also used in specialized release applications.

GUM EMULSION PERFORMANCE TESTING: ACRYLIC COATING COEFFICIENT OF FRICTION



WITH CHARACTER

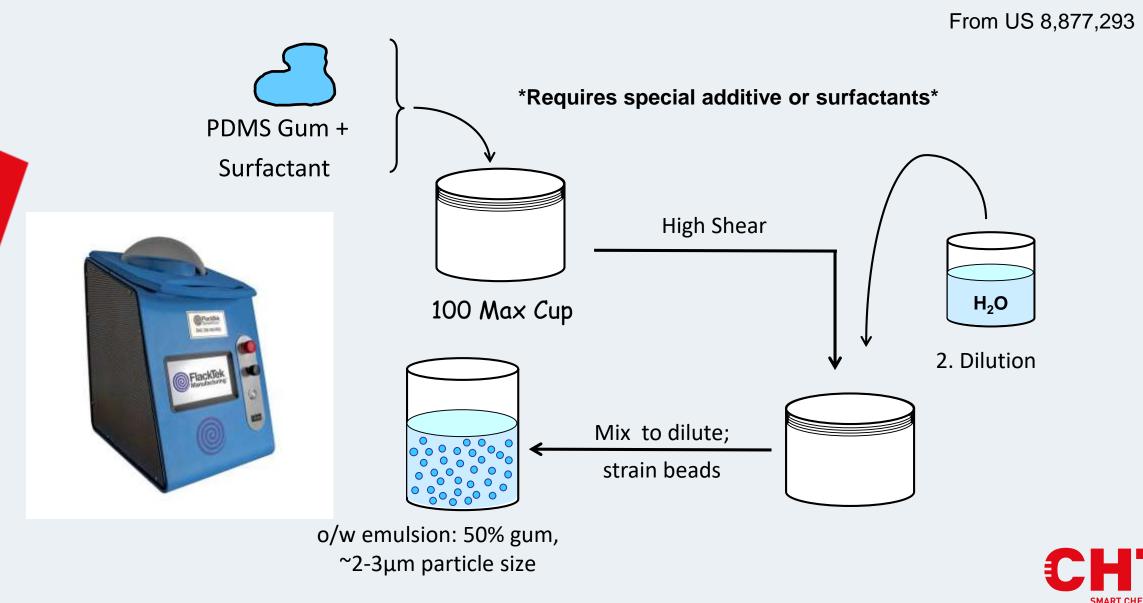
Acrylic Coating Formulation + 0.5% silicone

From US 8,877,293

GUM EMULSION PERFORMANCE TESTING: PRINTING INK COEFFICIENT OF FRICTION (COF)

Ink Formulation + 0.5% silicone

From US 8,877,293



SILICONE GUM EMULSIONS

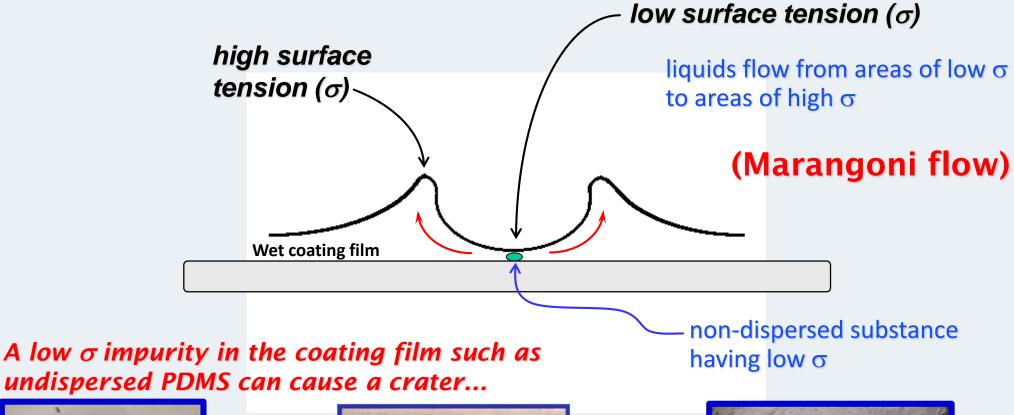
- Silicone gum is inherently difficult to emulsify due to the very high viscosity
- Silicone gum emulsification possible using specialized surfactants including certain SPE (silicone polyethers)
- Commercially available silicone gums emulsions typically contain cyclic silicones or organic solvents (can be bad for HS&E)
- Silicone gum preparation using EO/PO-based polymeric surfactants patented

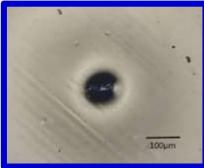
GUM EMULSIONS HIGH SHEAR PROCESSING

WITH CHARACTER

GUM EMULSION STABILITY

> Emulsion Stability - Important criterion for using a gum emulsion slip additive in a coating or ink.


- Insufficient silicone gum emulsion stability causes:
 - Precipitation
 - Coagulation
 - > Separation
 - Creaming
 - Sedimentation
 - > Craters in their cured, dried coatings.



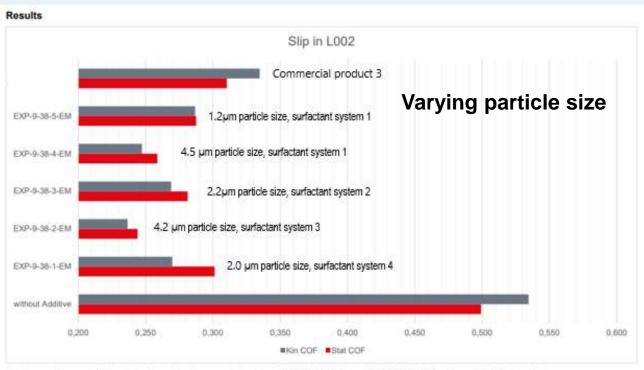
- > Craters Almost always caused by gum emulsion instability in the organic coating
- Emulsion stability is critical when incorporated into water-based organic formulas often need additional hydrophilic process aid - may contain residual aromatic solvent (bad for HS&E)

COATING DEFECTS: CRATERS

INDUSTRIAL ROUTES TO SILICONE GUM EMULSIONS

Methods for preparing silicone gum emulsions include the following:

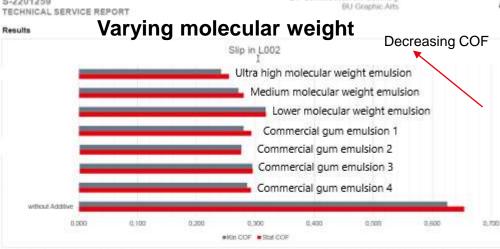
1) Mechanical emulsion of gum or gum dispersion


- 1) Produces emulsions that provide slip properties to coatings
- 2) Requires a combination of decreasing gum viscosity, highly specialized additives, and highly specialized equipment
- 3) Performance is generally lower than that of neat gum emulsions due to diluents/additives
- 4) Solvents not good for HS&E
- 2) In-situ emulsion polymerization of reactive siloxanes
 - 1) Produces emulsions of polymers having viscosities comparable to silicone gum emulsions
 - 2) Excellent slip properties (low CoF, abrasion resistance, anti mar, anti blocking)

CHT patented mechanical emulsification method for using an aminofunctional siloxane as a process aid:

- Reduced cyclic silicone content
- No residual aromatic solvent
- Surfactants non-hazardous

GUM EMULSIONS – SLIP TESTING



Slip is dependent on:

- **Molecular weight** \succ
- Particle size \triangleright
- Surfactant system \geq

BF Construction & Assembly

As shown above all of the tested samples are very similar in their performace and were able to reduce the slip by half, but EXP-8-25-1-EM had a slightly higher result and EXP-8-25-3-EM had a slightly lower result than the rest of the tested samples.

The overall comparability is very good.

S-2201259

SUMMARY

- Silicone gum and silicone gum emulsions provide slip, block resistance, haptic properties and release advantages in coatings and inks.
- > Silicone gum emulsion stability is critical for desired coating performance and appearance
- > New technology provides a pathway to make food compliant silicone gum emulsion coating additives
- Gum emulsions can be tailored for the application through surfactant selection, particle size, and moleculare weight of the polymer
- > In-situ polymerization low cyclic content, no diluents or organic solvents, can be FDA compliant
- > Amino functional silicone processing aid emulsion stability, no residual solvents, can be FDA compliant

Water-Borne Food Compliant High Performance Coatings & Inks

Thanks!

Acknowledgement / Scientists

Dr. Robert Graff

Donald T. Liles

Dr. Alice Hirt

Dr. Pete LeBaron

Dr. Bruce Berglund

Brian Mulhern

Senior Research and Development Chemist - Cassopolis Research & Development

P +1(269) 445-0847 ex 265
E brian.mulhern@cht.com

CHT USA Inc. | USA 805 Wolfe Avenue | Cassopolis, MI 49031 www.cht.com | www.cht-silicones.com