HIGH PERFORMANCE, SUSTAINABLE WAX AND SILICONE EMUSLIONS FOR INDUSTRIAL COATINGS APPLICATIONS

COATINGS TRENDS & TECHNOLOGIES, SEPTEMBER 2023

A CHT GROUP

CONTENT

- 1) CHT
- 2) Sustainability
- 3) Bio-Based Materials
- 4) Bio-Based Waxes
- 5) Waxes to Additives Emulsification
- 6) Bio-Sourced Wax Emulsion Barrier Coating Additives
- 7) Bio-Based Carbon Content
- 8) Low Cyclic Silicone Gum Emulsion
- 9) Conclusions

BRUCE BERGLUND

- Outdoors / Wilderness / Fishing
- Reading (Christian, Nature, Business, Health)
- Family Andre and Mark, Brandy
- Hockey, Music (trumpet)
- Education (PhD, MBA) Always Learning
- Minnesota Roots, Florida Home
- Focus on Health

CONSERVATION AND SUSTAINABILITY IS NOT NEW

The conservation of waters, forests, soils, and wildlife are all involved with the conservation of the <u>human spirit</u>. The goal we all strive toward is <u>happiness</u>, <u>contentment</u>, the <u>dignity of</u> <u>the individual</u>, and the <u>good life</u>.

Without love of the land, conservation lacks meaning or purpose, for only in a deep and inherent feeling for the land can there be dedication in preserving it.

Ethical and moral questions and how we answer them may determine whether primal scenes will continue to be a source of joy and comfort to future generations. <u>The decisions are</u> <u>ours and we have to search our minds and souls for the right</u> <u>answers</u>... We must be eternally vigilant, <u>embrace the broad</u> <u>concept of an environmental ethic to survive</u>.

If we can <u>change our priorities</u>, <u>achieve balance and</u> <u>understanding</u> in our roles as human beings in a complex world<u>, the coming era can well be that of a richer</u> <u>civilization, not its end</u>. Sigurd Olson

16.08.23

OUR COMPANY IS A FOUNDATION

The non-profit Reinhold-Beitlich-Foundation promotes:

- Social commitment to young people
- Science and research in the field of chemistry
- Research on renewable raw materials
- Promotion of environmental and nature conservation

Vision

CHT is the preferred partner and leading reference for sustainable chemical solutions in our markets, worldwide!

CHT TECHNICAL CORE COMPETENCIES

	CHEMISTRY	RAW MATERIALS	SYNTHESIS	PROCESSING	FUNCTIONS
ш	Wax	 Polyolefins Polyester Natural Waxes 	 Oxidation 		 Surface Modification Hydrophobicity Defoaming
OMPETITIVE ADVANTAGE	Silicone	 PDMS Siloxane Oligomers Silanes 	 Equilibration Hydrosilylation Polycondensation 	 Emulsifying Formulating 	
	Polysaccharide	 Guar Xanthan Tamarind 	 Alkoxylation 	 Dispersing Mixing Milling 	 Wetting / Dispersing Rheology
<u></u>	Synthetic Polymers ¹⁾	 Acrylics Isocyantes Polyols 	 Polymerisation 		► Film Formation

1) Polyacrylates, polyurethanes, polyester

SUSTAINABLE RAW MATERIALS

- ✓ Residual monomers / oligomers (< 1000 g/mol)
- ✓ Synthetic organic solvents
- ✓ Organic bound halogens
- ✓ Emulsifiers residual EO-content (o.2ppm EO)
- ✓ Formaldehyde
- ✓ Heavy metals
- ✓ APEO
- ✓ VOCs
- ✓ Amines
- ✓ Cyclic siloxane D4 / D5 (<0.1%)
- Non-evaluated substances (10 ppb)
- ✓ And...

Or, Use Bio-Based Materials

A CHT GROUP

7

BIO-BASED NON-FOSSIL MATERIALS

Animals

Casein (from milk) Waxes

Plants

Cellulosic resins Gum Rosin Tall Oil Rosins Natural Rubber Alkyds PLA (Polylactic acid) Polyurethanes (diols) Polysaccharides (Guar, Xanthum, Tamarind)

Soybean, Linseed, Castor, Corn Oils

Alcohols (ethanol), Esters

Waxes

Binders Additives

Binders / Monomers / Rheology Modifiers

Plasticizers, Drying oils

Solvents

Additives

WAXES - BIO-BASED

BIO-BASED NON-FOSSIL WAXES

Animal Waxes

Bees wax – From the abdominal glands of the honeybee

Shellac wax – From the female lac bug in India and Thailand

Lanolin wax – From sheep's wool

Other waxes?

Moderately hard, tacky

Hardness, Gloss, Glue

Hydrophobic, Moisturizing

Hydrophobic?, Oleophobic?

BIO-BASED NON-FOSSIL WAXES

Vegetable Waxes

Carnauba (palm) wax – From the carnauba tree in Brazil

Rice bran wax – From rice oil

Candelilla wax – From small shrub in northern Mexico and SW US

Laurel wax – From the fruit of the Myrica pubescensbush

Berry wax – From Rhus verniciflua berries (Varnish or lacquer tree)

Other waxes - Sunflower, Soy, Castor, Coconut, Almond...

Slip, Gloss, Clarity

Gloss, Hydrophobic Emulsion stabilization, Rheology, Binding, Plasticizing

Hardness, Gloss, Rheology

Haptic properties, Rheology

Soft, Emulsion stabilization

Hydrophobic?, Oleophobic?

WAX PROPERTIES

WAX CHARACTERISTICS

FROM WAX TO ADDITIVE

- \blacktriangleright Raw waxes \rightarrow granules, wax sheets, powder
- ► Not easy to incorporate into paint systems
- ► Waxes become wax additives
- \blacktriangleright Wax particles are finely distributed in a liquid phase \rightarrow
 - > Dispersion or emulsification
 - > Stabilization by emulsifiers

Emulsion Basics

Emulsion: A dispersion of one immiscible liquid in another, usually stabilized by a <u>surface active agent.</u> **Surfactant:** A substance which tends to reduce the surface tension of a liquid in which it is dissolved.

Surfactants are amphipathic compounds. Meaning they have and affinity for both water and oil:

There are three main types of surfactants: Nonionic, Cationic, and Anionic

Hydrophilic head (Lipophile) Type of surfactant used imparts certain properties to the emulsion.

In case of multiple surfactant types, the emulsion takes its type from the "**more critical**" surfactant used (i.e., nonionic + anionic = anionic emulsion.)

Oil in Water Emulsion

How Various Types of Emulsions are Made

High Shear Processing aka "Mechanical Emulsions"

Mix oil, H₂O, surfactant; subject mixture to high shear.

Mechanical emulsions is a broad term which captures various methods of high shear processing..... More to come!!

Emulsion Polymerization (EP):

Subject polymerizable monomer, H₂O, & surfactant to high shear; carry out polymerization of monomer. Useful with hydrophobic polymerizable monomers.

Think of each particle in this emulsion of being a micro-reactor

Microemulsion:

Emulsions < 100nm; spontaneously formed emulsions. Don't require shear forces.

CHT STREAMLINED PROCESS WITH BACKWARD INTEGRATION OF THE WAX OXIDATION

BARRIER COATING PRODUCTS

Product	Wax Туре	Barrier effect			Rating
			Oil/Grease	Water vapour	
Wax dispersion (40%, nonionic, pH 7.0)	Paraffin	~		~	\star
Wax dispersion (40%, nonionic, pH 9.0)	Mod. Fischer-Tropsch	\checkmark			1.Ģ
Wax emulsion A (35%, nonionic / anionic, pH 9.5)	Natural blend	\checkmark	\checkmark		ø
Wax emulsion B (35%, nonionic / anionic, pH 9.5)	Natural blend	\checkmark	\checkmark	\checkmark	ø
Wax dispersion (35%, nonionic, pH 4.5)	Carnauba	\checkmark			ø

Price Value Best

Product with best price-performance ratio

Product with highest content of biobased material

- **Performance Best**
 - Product with best performance

REGULATORY STATUS

	Swiss Ordinance	FDA	Nestlé Guidance	Usable for SUPs	Free of MOSH / MOAH	Free of PFAS
Paraffin wax dispersion (40%, nonionic, pH 7.0)	List A	175.300 175.320 176.170 176.180	Yes	No	No MOAH MOSH content <14%	Yes
Mod. Fischer-Tropsch wax dispersion (40%, nonionic, pH 9.0)	List A	175.300 175.320 176.170 176.180	Yes	No	Yes	Yes
Natural blend Wax emulsion A (35%, nonionic / anionic, pH 9.5)	List A	175.300 175.320 176.170 176.180	Yes	Yes	Yes	Yes
Natural blend Wax emulsion B (35%, nonionic / anionic, pH 9.5)	List A	175.300 175.320 176.170 176.180	Yes	Yes	Yes	Yes
Carnauba wax dispersion (35%, nonionic, pH 4.5)	List A	175.300 175.320 176.170 176.180	Yes	Yes	Yes	Yes

Mandatory information and limitations are documented in our FCM - Food Contact Material Statements (available upon request)

A CHT GROUP

COMPANY

CHT

ULTRALUBE CT PRODUCTS BASED ON RENEWABLE RESOURCES

product	wax type	biobased according ISO/IEC 17025:2017	Properties
Natural blend Wax emulsion A	Natural wax compound	100%	Sustainable replacement to paraffin and HDPE/paraffin in waterbased coatings
Natural blend Wax emulsion B	Natural wax compound	99%	Suitable for the formulation of barrier coatings on paper
Carnauba Wax dispersion A	Carnauba	94%	Excellent slip and scratch resistance for waterbased coatings
Carnauba Wax dispersion B	Carnauba	93%	Seed coating version fulfilling EPA regulatory requirement

NATURAL BLEND WAX EMULSION A

	contact angle			
Blank	70,7°	01	9	10
Natural blend wax emulsion A	85,3°	00	8	90

Natural blend wax emulsion A			
solids	35%		
Ionic chararacter	nonionic/anionic		
pH value	9.5		
melting point	80°C		

method	gloss / COF / contact angle	
system	waterbased PU/acrylate dispersion	
dosage	4% delivery form	
conditions	60µm wet film thickness, drying	

BIO-BASED CARBON CONTENT - METHOD

- Radiocarbon (C14) reports
- Results reported as "% Biogenic Carbon" indicating the percentage carbon from "renewable" (biomass or animal by-product) sources versus petroleum (or otherwise fossil) sources .
- 100 % Biogenic Carbon indicates that a material is entirely sourced from plants or animal by-products
- 0 % Biogenic Carbon indicates that a material did not contain any carbon from plants or animal by-products.
- The analytical measurement is cited as "percent modern carbon (pMC)". This is the percentage of C14 measured in the sample relative to a modern reference standard (NIST 4990C).
- The % Biogenic Carbon content is calculated from pMC by applying a small adjustment factor for C14 in carbon dioxide in air today. It is important to note is that all internationally recognized standards using C14 assume that the plant or biomass feedstocks were obtained from natural environments.
- Reported results are accredited to ISO/IEC 17025:2017 Testing Accreditation PJLA #59423 standards

BIO-BASED CARBON CONTENT – NATURAL WAX EMULSION A

Summary of Results - % Bio-based Carbon Content EN 16640:2017 (AMS) Annex E Method B TC

Certificate Number: 541583652230136407

RESULT: 100 % Bio-based carbon as a fraction of total Carbon

% Bio-based Carbon Content EN 16640:2017 (AMS) Annex E Method B TC

CHT TECHNICAL CORE COMPETENCIES

1) Polyacrylates, polyurethanes, polyester

SILICONE GUM

initial

1 hour

24 hours

- Silicone gum High MW linear polydimethylsiloxane (PDMS) having a
 - Viscosity on the order of 20M cP (20K Pa-sec)
 - > DP of about 3,500 and higher
 - Mn ~260,000
- Usually SiOH terminated, also Me3SiO- (methyl) and H2C=CH- (vinyl) groups
- > Silicone gum emulsions for slip additives usually are made of SiOH terminated polymer.

A CHT GROUP

CH.

SILICONE GUM EMULSIONS – COATING ADVANTAGES

Silicone gum emulsions find great utility as slip additives in coatings.

- > Very high MW PDMS (eg- silicone gum) has become preferred slip additive in numerous coating applications.
 - > Leather coatings Also used to modify haptic properties including the hand (feel) of leather surfaces.
 - Printing Inks and OPVs
- Silicone gum emulsions provide block resistance to many coatings, including leather coatings, inks and overprint varnishes.
- Silicone gum emulsions are also used in specialized release applications.

SILICONE GUM EMULSIONS - PREPARATION

- > Silicone gum is inherently difficult to emulsify due to the very high viscosity
- > Silicone gum emulsification possible using specialized surfactants including certain SPE (silicone polyethers)
- Commercially available silicone gums contain cyclic silicones (can be bad for HS&E)
- Silicone gum preparation using EO/PO-based polymeric surfactants patented
- Stability when incorporated into water-based organic polymeric coatings is critical need for additional hydrophilic process aid - Can contain residual aromatic solvent (bad for HS&E)

ADDITIONAL ROUTES TO SILICONE GUM EMULSIONS - INCREASING STABILITY AND SUSTAINABILITY

Methods for preparing silicone gum emulsions include the following:

1) Reducing viscosity of gum by adding a solvent or diluent

- 1) Produces emulsions that provide slip properties to coatings
- 2) Performance is generally lower than that of neat gum emulsions
- 3) Solvents not good for HS&E
- 2) In-situ emulsion polymerization of reactive siloxanes
 - 1) Produces emulsions of polymers having viscosities comparable to silicone gum emulsions
 - 2) Excellent slip properties (low CoF, abrasion resistance, desirable hand)
 - 3) Emulsion stability is not as good as market leader's proprietary technology

CHT patented emulsification method for using an aminofunctional siloxane as a process aid:

Reduced cyclic silicone content

No residual aromatic solvent

Surfactants non-hazardous

SUMMARY

> Using sustainable raw materials is one key component of Sustainability

> Bio-Based Materials come from renewable domestic agricultural materials

- Natural, bio-based waxes can provide needed coatings properties
- Bio-sourced waxes can be used to make efective barrier coating additives
- > New low cyclic silicone gum emulsions are more sustainabile
- Next Step Carbon Footprint A real measure of sustainability

Let's work together to:

Promote environmental and nature conservation

Use renewable, bio-based raw materials

Thank You For Your Attention

Questions?

to be a set of the set of the set of the set