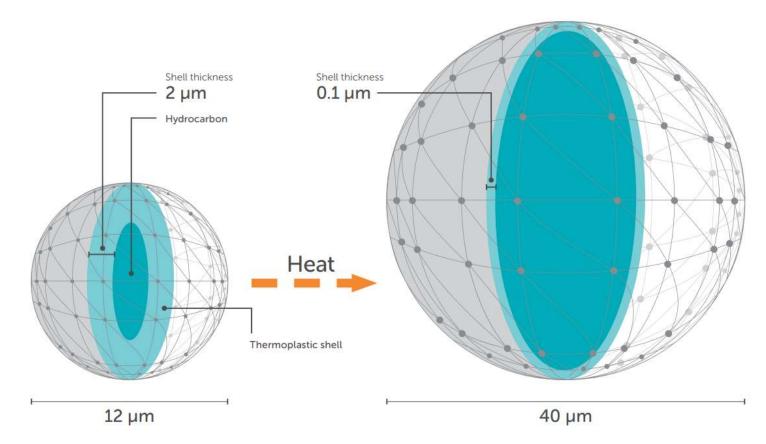


Cool Additives Technology

High-Performance TiO₂-Free Roof Coatings Via Novel Hollow Plastics Microspheres

Evan Montanez

- Headquartered in Houston, Coadtech offers more than 30 years of experience in the specialty chemicals distribution business.
- Coadtech specializes in highly reflective exterior coatings (roof, wall, and pavement) and serves North American CASE manufacturers with climateresilient and sustainable technologies.
- Coadtech only carries materials with strong sustainability propositions.


Coadtech Cool Additives Technology

Hollow, Plastic Microspheres (HPMS)

What are they?

What are hollow plastic microspheres?

- The sphere consists of a polymer shell encapsulating a gas.
- When heated, the internal pressure from the gas increases and the thermoplastic shell softens, resulting in a dramatic increase of the volume of the microspheres.
- This heated step is a highly complex and irreversible reaction.

Different microspheres for different applications

Hollow, Closed Cell Microspheres

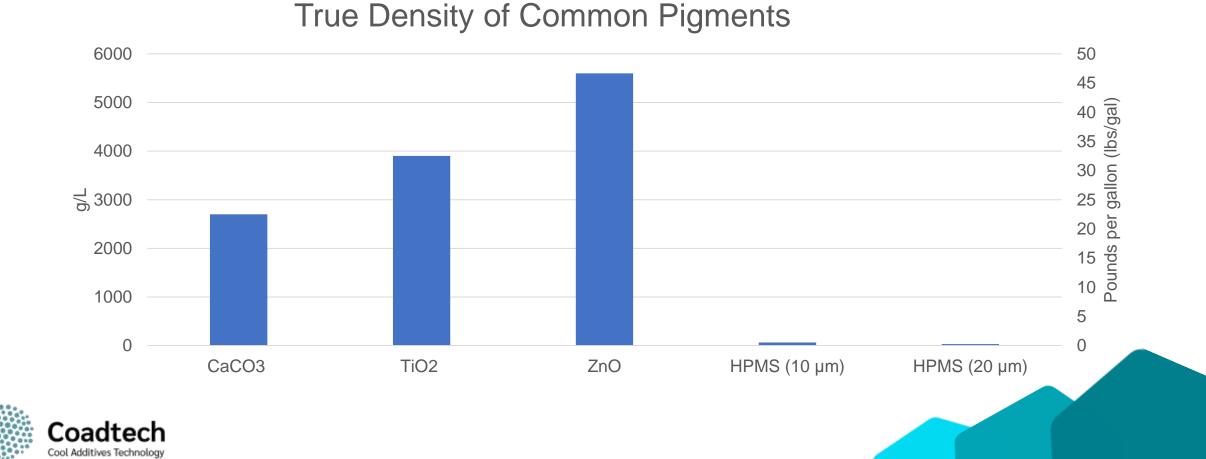
Min	Polymer	
Ceramic	Glass	Thermoplastic
High density	Medium density	Low density
Bigger particle size	Medium particle size	Smallest particle size
High resistance	Fragile to shear forces	Moderate resistance with a flexbile shell

HPMS as a Multifunctional, Climate-Resilient Filler

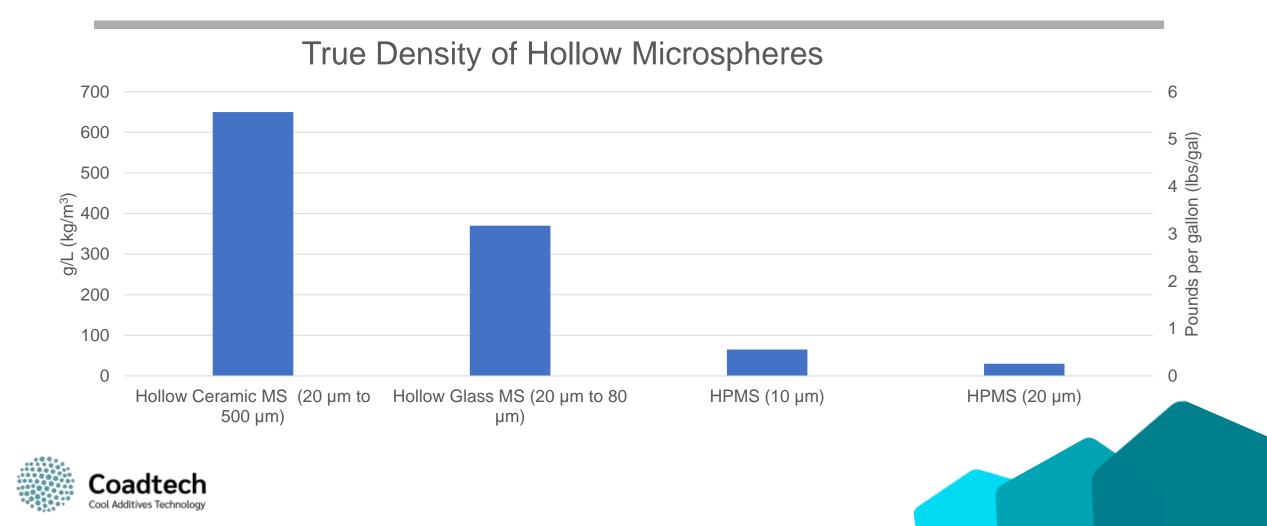
Full Spectrum Solar Reflective Particle

Ultralightweight

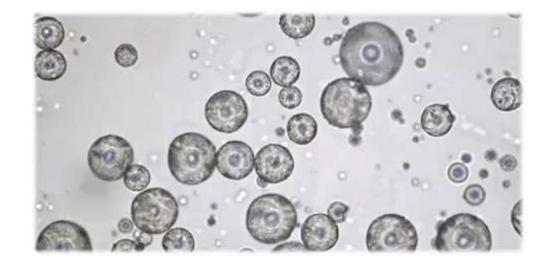
and flexible



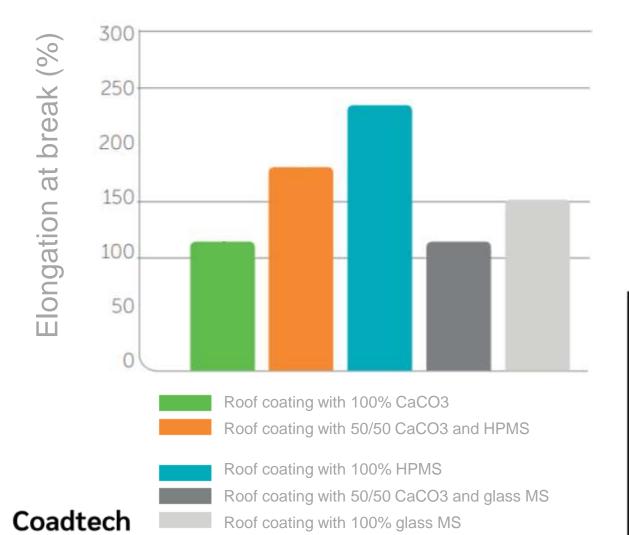
Physical Properties of HPMS


How do they differ from traditional fillers and mineral microspheres?

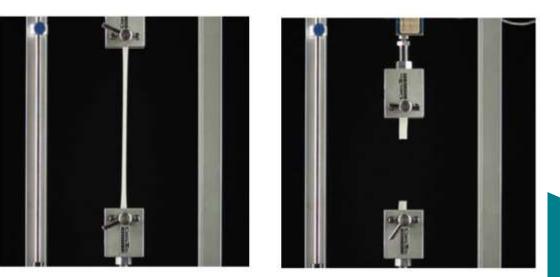
HPMS as an Ultralightweight Filler



HPMS as an Ultralightweight Filler


Flexibility from a Filler

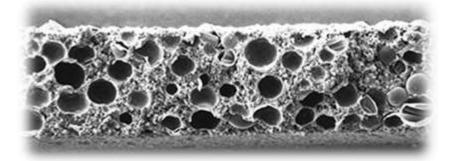
- Thermoplastic Shell
 - Glass transition temperatures ranging from 100°C to 200°C
- HPMS are capable of contracting under stress, such as shear forces from dispersion blades and airless sprayers
 - This allows the microspheres to dampen sound and effectively fill cracks.



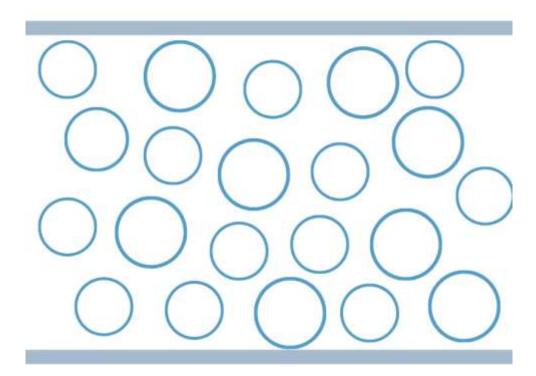
What happens with elongation?

Additives Technology

- In a collaboration with PRA World Ltd (UK), it was observed that HPMS can dramatically increase the elongation at break when substituting CaCO3.
- A comparison with glass MS was also done.


Achieving Solar Reflectivity With HPMS

How can we use Foam Optics to make higher performing solar reflective coatings and more energy efficient structures?



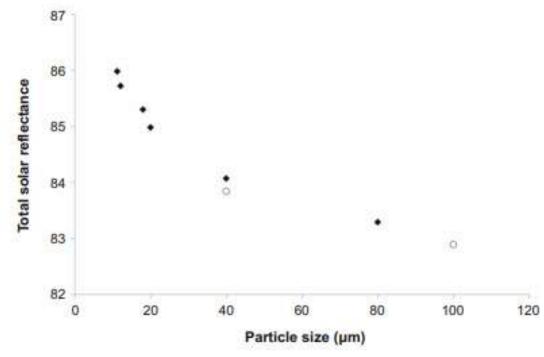
Solar reflectance with HPMS

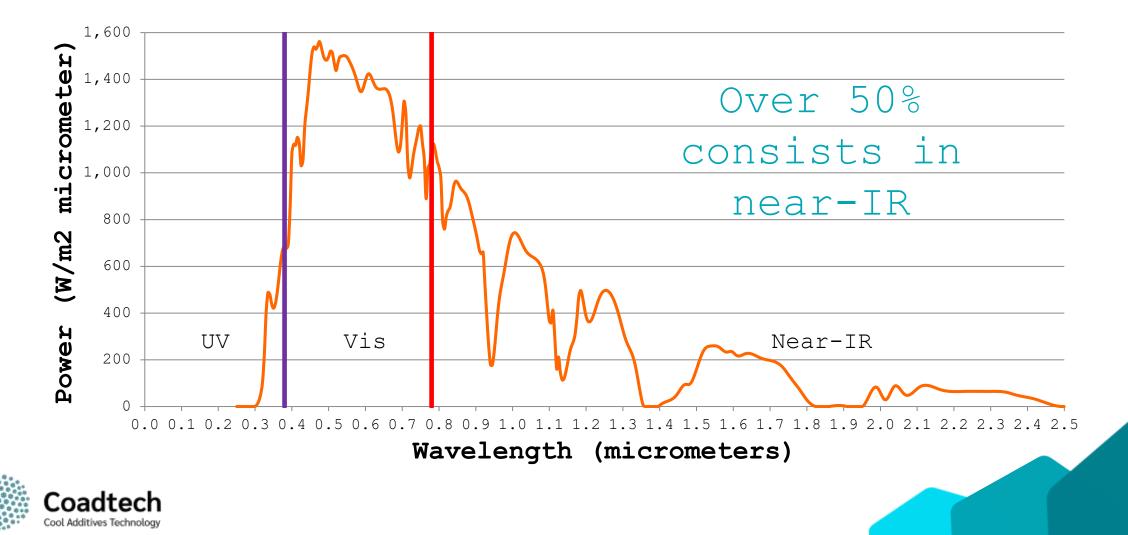
- Shell is transparent to the medium.
- HPMS behave as microbubbles.
- Light is serially refracted due to the multiple airresin interfaces.
- This Foam Optic effect can also be seen in polar bear fur and and the foamy head of a beer.

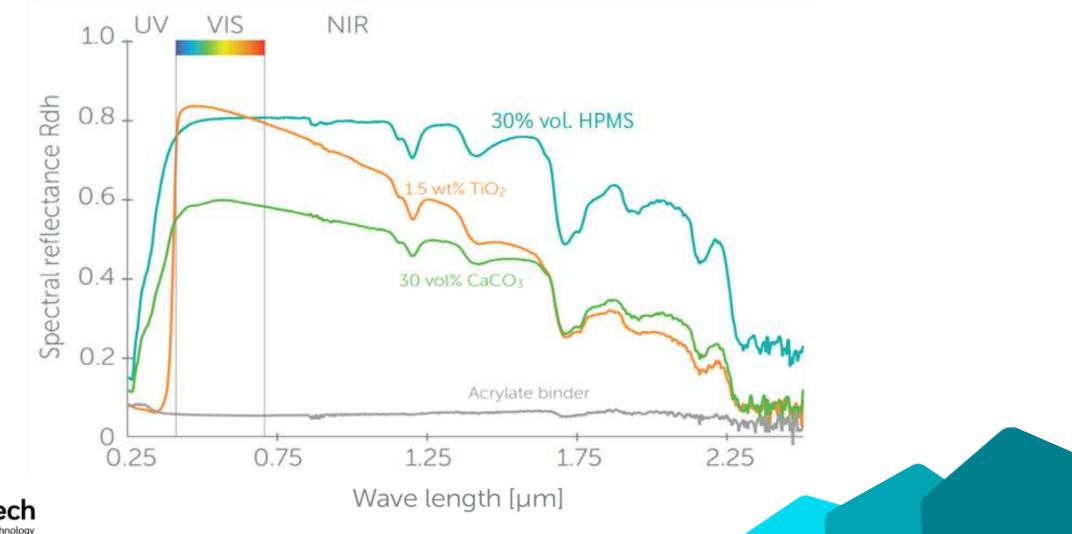
Solar Reflectance with HPMS

- The amount of radiation reflected is indirectly dependent on the particle size.
 - Light is serially refracted by the air-resin interfaces.
 - Achieving the required density of air-resin interfaces in a commercial coating leads to a smaller size micropshere
- The smaller the microsphere is, the more interfaces you can have in the same volume
- Incident light is the same wavelength of reflected light
 - Allows reflected light to escape Earth's atmosphere and prevents Greenhouse effects
 - Avoids issues with the "Atmospheric Window"

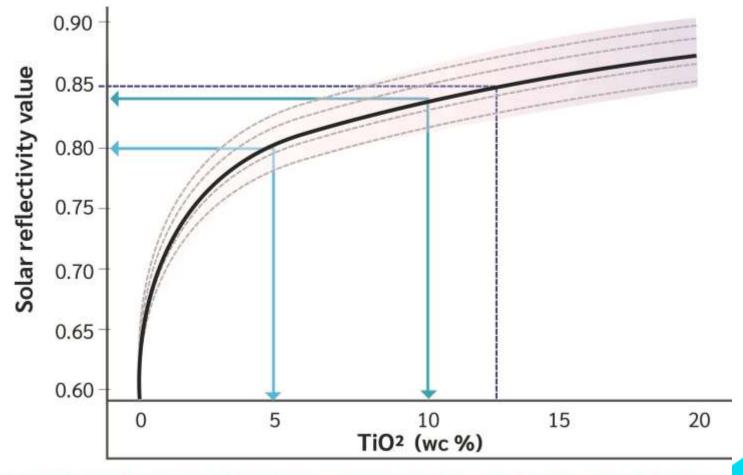
Reflectivity Gains Based On Interface Density, Not Composition



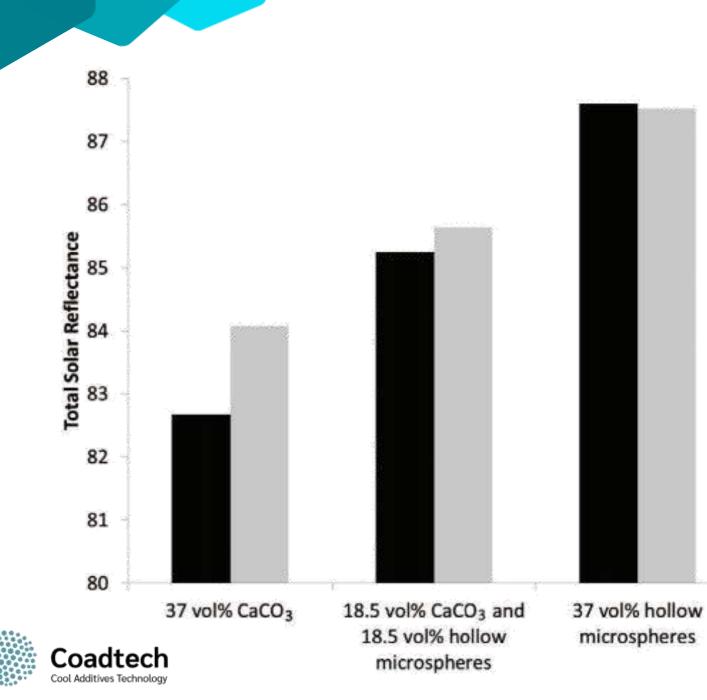

Fig. 4: Effect of particle size on the total solar reflection (R_{sol}) in coatings (dry thickness 0.6 mm \pm 0.05 mm) containing 1.6 vol% TiO₂ and 30 vol% of hollow fillers having different average particle size. Paints containing smaller microspheres have higher reflectance values as these contain more reflecting units. (*) Hollow thermoplastic microspheres, (\bigcirc) Hollow glass microspheres


Source: Reflective properties of hollow microspheres in cool roof Coatings (June, 8th, 2017) Sandin et al., Journal of Coatings Technology and Research (JCTR).

Sunlight Composition



Reflectance Comparison



TiO² needed to improve SR from 80% to 84%

Source: Dupont " Cool Roofing, importance and general considerations highly reflective coatings" 2012.

	37% vol CaCO3
TiO2 (%w)	7.3
HPMS (%w)	0.0
PVC (%)	43.1
Solid Content (%w)	63.8

Initial Post aging

From: "Hollow Thermoplastic Microspheres in Elastomeric Cool Roof Coatings", Nordin, J., Sandin, O., and Greenwood, P. (COATINGS TECH VOL. 16 / NO. 1 / JANUARY 2019), Akzo Nobel Pulp and Performance Chemicals AB, Sweden

TiO₂-Free Concept Roof Coating

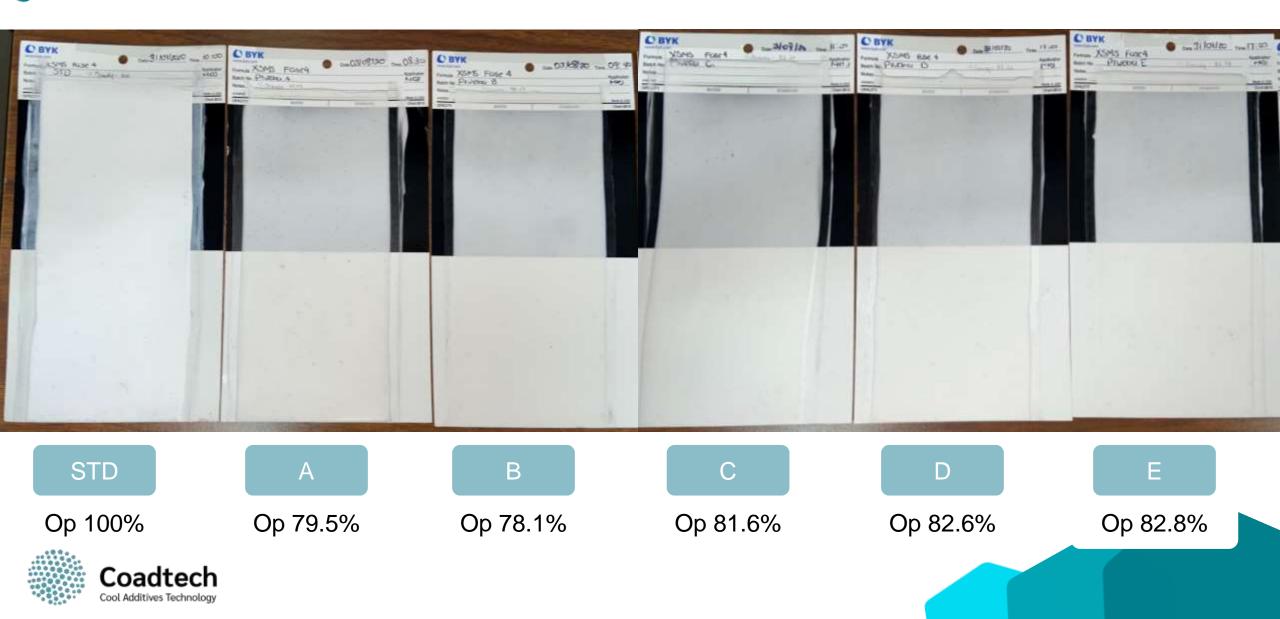
TiO₂-Free Concept Roof Coating

Project Aim:

Develop a high performance TiO₂-Free acrylic roof coating

Experimental Criteria of High Performance Roof Coating:

- Sufficient Opacity (>97%)
- High Solar Reflectivity (>.80 TSR)
- High SRI (>104)


	Properties	STD	А	В	С	D	Е
_	Volume Solids	42.6%	43.1%	43.1%	43.1%	43.1%	43.1%
atior	Weight Solids	58.0%	43.1%	39.4%	35.7%	41.7%	38.5%
eriza	% Powder Weight	39.4%	17.1%	12.0%	6.4%	17.6%	13.2%
acte	CPVC	0.577	0.647	0.652	0.657	0.644	0.647
Characterization	PVC	0.448	0.443	0.443	0.443	0.494	0.497
Ŭ	Q	0.778	0.685	0.679	0.675	0.768	0.768
	CaCO3	35.4%	16.8%	11.4%	5.7%	17.1%	12.5%
Weight	TiO2	4.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Wei	MS 20 micron	0.0%	2.6%	2.8%	2.9%	2.7%	2.8%
	MS 10 micron	0.0%	0.0%	0.6%	1.3%	0.6%	1.2%
e	CaCO3	41.8%	14.4%	9.2%	4.3%	14.3%	9.9%
Dry Volume Solids	TiO2	3.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ry Vd Sol	MS 20 micron	0.0%	29.9%	30.1%	30.1%	30.0%	29.9%
D	MS 10 micron	0.0%	0.0%	5.0%	10.0%	5.1%	9.9%

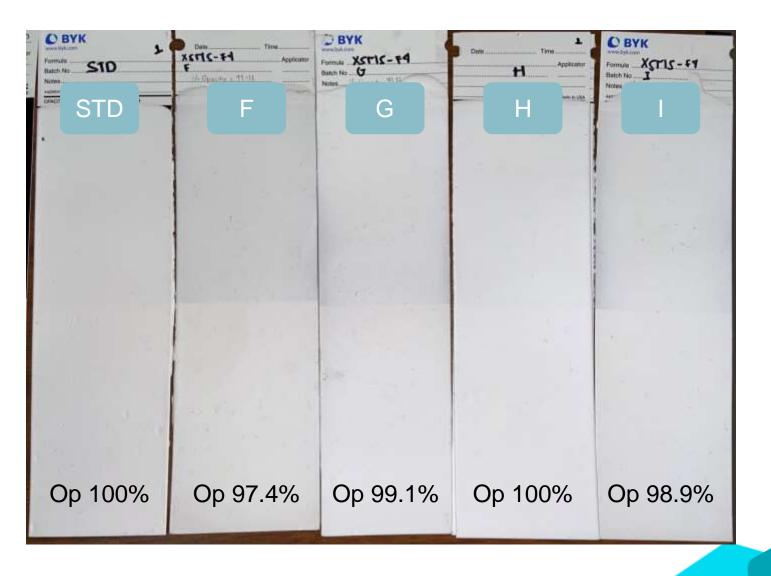
0 % TiO2

 A,B,C: PVC
 constant
 D+E: Q constant

Coadtech

		OTD	F	0		
	Properties	STD	F	G	н	l
~	% Volume Solids	42.6%	43.4%	43.3%	43.2%	42.8%
ation	% Weight Solids	58.0%	38.9%	39.0%	39.1%	41.7%
eriza	% Powder Weight	39.4%	13.7%	13.9%	14.1%	18.1%
acte	CPVC	0.577	0.646	0.646	0.645	0.642
Characterization	PVC	0.448	0.503	0.502	0.502	0.500
U	Q	0.778	0.778	0.778	0.778	0.778
	CaCO3	35.4%	12.0%	11.2%	10.5%	15.7%
Weight	TiO2	4.0%	1.0%	2.0%	3.0%	1.9%
Wei	MS 20 micron	0.0%	2.8%	2.8%	2.8%	2.7%
	MS 10 micron	0.0%	1.2%	1.2%	1.2%	0.6%
ē	CaCO3	41.8%	9.5%	8.9%	8.3%	13.3%
olum ids	TiO2	3.0%	0.5%	1.0%	1.5%	1.0%
ry Vo Sol	MS 20 micron	0.0%	30.3%	30.3%	30.3%	30.5%
Δ	MS 10 micron	0.0%	10.0%	10.0%	10.0%	5.1%
Dry Volume Solids						

"Trace" TiO2 Coatings


 Heavy TiO2 Reduction
 Q constant

Coadtech Cool Additives Technology

	Properties	STD	N-A	N-B	N-D	N-D RF1	N-D RF3	N-D RF4
no	Volume Solids	42.62%	42.91%	43.04%	42.85%	43.00%	45.00%	46.04%
Characterization	Weight Solids	58.04%	31.25%	31.10%	33.09%	33.23%	35.79%	38.30%
teri	CPVC	0.577	0.605	0.605	0.583	0.579	0.567	0.553
ara(PVC	0.449	0.471	0.470	0.450	0.450	0.458	0.451
చ	Q	0.778	0.779	0.777	0.772	0.778	0.808	0.815
	CaCO3	35.4%	0.7%	0.7%	0.0%	0.0%	0.0%	0.0%
	Opaque Polymer	0.0%	5.9%	6.9%	7.2%	7.2%	8.0%	7.9%
	ZnO	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Weight	TiO2	4.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Wei	MS 20 micron	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	MS 10 micron	0.0%	5.9%	5.9%	5.2%	5.2%	5.3%	5.1%
	Kaolin Clay 1	0.0%	2.1%	2.1%	5.1%	0.0%	0.0%	0.0%
	Kaolin Clay 2	0.0%	0.0%	0.0%	0.0%	5.1%	7.2%	9.3%
	CaCO3	41.8%	0.5%	0.5%	0.0%	0.0%	0.0%	0.0%
ds	Opaque Polymer	0.0%	6.0%	7.0%	7.6%	7.6%	8.2%	8.0%
Solids	ZnO	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	TiO2	3.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Volume	MS 20 micron	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	MS 10 micron	0.0%	45.1%	44.9%	41.0%	41.0%	40.4%	38.2%
Dry	Kaolin Clay 1	0.0%	1.5%	1.5%	4.0%	0.0%	0.0%	0.0%
	Kaolin Clay 2	0.0%	0.0%	0.0%	0.0%	4.0%	5.4%	6.9%

• 0% TiO2

- Opaque Polymer
- Kaolin Clay
- HPMS 10 micron only

Sample	Aluminum Panel			
	WI CIE			
STD	67.64			
N-D	68.72			
N-D RF4	69.45			

Contrast Ratio and Solar Reflectivity

Sample	(Contrast Ratio	Average	Average	
STD 1	0.838	0.837	0.837	0.837±0.017	83.73%
STD 2	0.801	0.807	0.803	0.804±0.016	80.37%
N-D 1	0.865	0.863	0.864	0.864±0.017	86.40%
N-D 2	0.809	0.805	0.812	0.809±0.017	80.87%
N-D RF4 1	0.88	0.878	0.879	0.879±0.018	87.90%
N-D RF4 2	0.838	0.839	0.839	0.839±0.017	83.87%

Sample	Solar	Reflectivity Re	esults	Average	TSR
STD	0.818	0.823	0.823	0.821±0.016	0.821
N-D	0.835	0.835	0.835	0.835±0.017	0.835
N-D RF4	0.84	0.841	0.842	0.841±0.017	0.841

TiO2-Free Formula Properties

	Properties	N-D RF4			
no	Volume Solids	46.04%			
zatio	Weight Solids	38.30%			
Characterization	CPVC	0.553			
	PVC	0.451			
င်	Q	0.815			
	CaCO3	0.0%			
	Opaque Polymer	7.9%			
	ZnO	0.0%			
Weight	TiO2	0.0%			
Wei	MS 20 micron	0.0%			
	MS 10 micron	5.1%			
	Kaolin Clay 1	0.0%			
	Kaolin Clay 2	9.3%			
	CaCO3	0.0%			
ds	Opaque Polymer	8.0%			
Soli	ZnO	0.0%			
ne	TiO2	0.0%			
Dry Volume Solids	MS 20 micron	0.0%			
> >	MS 10 micron	38.2%			
P	Kaolin Clay 1	0.0%			
	Kaolin Clay 2	6.9%			

Rating	N-D RF4
Total Solar Reflectivty	84.1
Emissivity	86.1
Solar Reflectance Index	105.1

Key Findings

- Bimodal distribution of 20 and 10 particles did NOT provide opacity as hoped; Low TiO2 loadings must use 10 micron particles only
- Group 3 coatings (using ZnO) did not provide aceptable results
- A sufficiently high performing TiO2-free concept coating is posible with 10 micron particles
- Group 2 coatings (Trace TiO2 coatings) warrant further investigation

Cool Addit

Cool Additives Technology

Formulation guidelines

How to incorporate HPMS in your formulation

Choosing a Grade of Microspheres for Solar Reflectivity

Selecting a grade of HPMS for evaluation in a formulation is a very complex process.

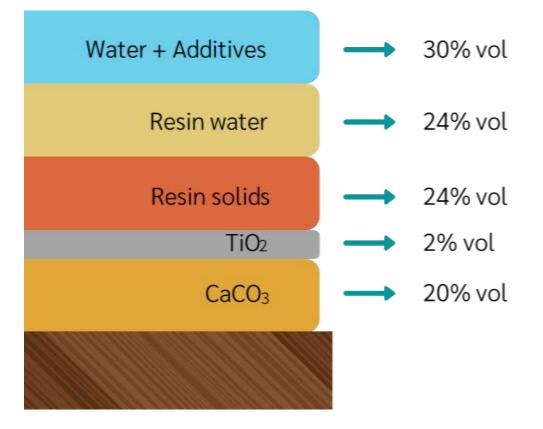
• There are many factors that will impact the performance of HPMS

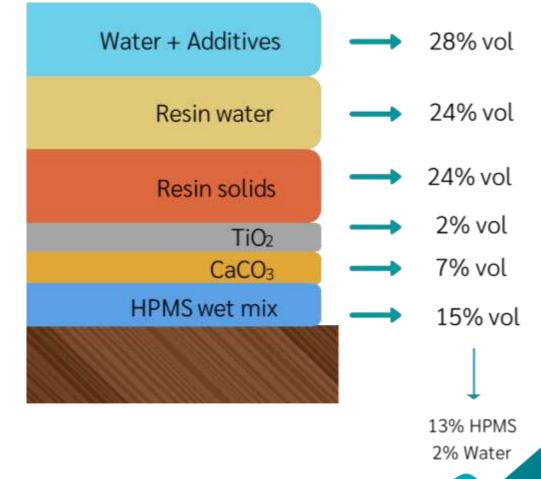
Smallest is best for maximum reflectivity

• 10 micron particle diameter is smallest commercially avaliable

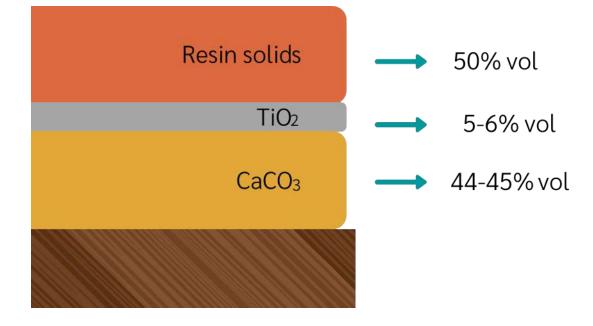
Key points to consider:

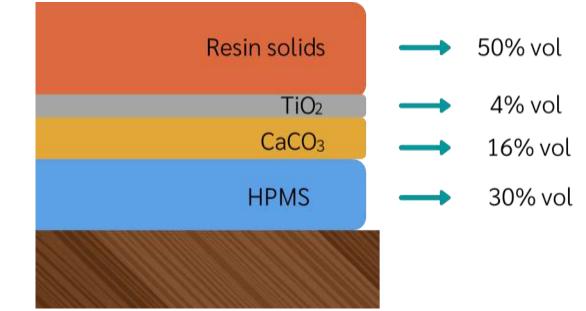
- Colored or White coating?
- Intended gloss of the coating
- Final thickness of the coating




Formulation guidelines

- Formulation by volume is key in coatings filled with microspheres.
 - It is important to keep in mind that HPMS add a lot of volume with very low weight.
- In a roof coating formulation:
 - In order to maintain the mechanical properties and a constant PVC, we recommend to replace CaCO₃ with HPMS by volume.
 - For high solar reflectance, the best start is to have 30% of the dry film volume solids of HPMS.
- Incorporate microspheres in the let-down
 - Modern grades of HPMS are capable of freely dispersing in solvent- and waterborne systems with little to no agitation.
 - Grinding is not necessary, but HPMS will survive the high shear forces if . desired.


Wet film – Roof coating



Dry film – Roof coating

Condensed Starting Formulation Info (Roof Coating)

N	NO HPMS Solid Calculations					WI	TH HPMS	Solid Calc	ulations	
	Solid Weight (Ibs)	Solid Weight (%)	Solid Volume (gal)	Solid Volume (%)			Solid Weight (Ibs)	Weight	Solid Volume (gal)	Solid Volume (%)
Acrylic binder	48.4	33.8%	104.1	64.1%		Acrylic binder	48.4	71.7%	104.1	64.1%
TiO2	8.8	6.2%	3.6	2.2%		TiO2	8.8	13.0%	3.6	2.2%
HPMS	0	0.0%	0	0.0%		HPMS	0.8	1.3%	48.7	30.0%
CaCO3	85.8	60.0%	54.7	33.7%		CaCO3	9.4	14.0%	6	3.7%
	Solic	ls Volume	e (%)	64.7%		Solids Volume	(%)	64.7%		
	Solic	ds Weight	: (%)	65.0%		Solids Weight	(%)	45.2%		
		CPVC		0.64		CPVC		0.70		
		PVC		0.36		PVC		0.36		
	Q	(PVC/CPV	′C)	0.56		Q (PVC/CPV	C)	0.51		

TiO2-Free Formula Properties

	Properties	N-D RF4			
no	Volume Solids	46.04%			
zatio	Weight Solids	38.30%			
Characterization	CPVC	0.553			
	PVC	0.451			
င်	Q	0.815			
	CaCO3	0.0%			
	Opaque Polymer	7.9%			
	ZnO	0.0%			
Weight	TiO2	0.0%			
Wei	MS 20 micron	0.0%			
	MS 10 micron	5.1%			
	Kaolin Clay 1	0.0%			
	Kaolin Clay 2	9.3%			
	CaCO3	0.0%			
ds	Opaque Polymer	8.0%			
Soli	ZnO	0.0%			
ne	TiO2	0.0%			
Dry Volume Solids	MS 20 micron	0.0%			
> >	MS 10 micron	38.2%			
P	Kaolin Clay 1	0.0%			
	Kaolin Clay 2	6.9%			

Rating	N-D RF4
Total Solar Reflectivty	84.1
Emissivity	86.1
Solar Reflectance Index	105.1

Key Findings

- Bimodal distribution of 20 and 10 particles did NOT provide opacity as hoped; Low TiO2 loadings must use 10 micron particles only
- Group 3 coatings (using ZnO) did not provide aceptable results
- A sufficiently high performing TiO2-free concept coating is possible
- Group 2 coatings (Trace TiO2 coatings) warrant further investigation

Cool /

Cool Additives Technology

Future Developments

- Enhanced weathering resistance from insoluble fillers like HPMS.
- Synergistic effect as matting agent and TiO2 substitution in architectural paints.
- Further exploration into "trace" TiO2 coatings
 - 100% opacity at 0.5% w/w TiO2 with 10 micron particles demonstrated in unpublished data

Coadtech

Cool Additives Technology

Thank you!

Contact info:

2001 Timberloch Place Suite 500 Spring, TX 77380 phone. 281-591-4715 info@coad-tech.com