Inverted ribbon phyllosilicates – a different family of rheology additives



We Wit.



0

The LEHVOSS Group – from Hamburg to the world – 125 years of innovation



Inverted ribbon phyllosilicates

#### **BUSINESS AREAS**

| PLASTIC AND<br>RUBBER                           | High-Performance<br>Compounds      | Technical<br>Compounds                                                | Masterbatches<br>and Additives   | Products for<br>Composites                   | <b>Rubber</b><br>Chemicals                   |
|-------------------------------------------------|------------------------------------|-----------------------------------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------|
| SPECIAL CHEMICALS<br>AND INDUSTRIAL<br>MINERALS | Magnesium<br>Compounds             | Rare earth /<br>Zirconium<br>Compounds,<br>Inorganic Raw<br>Materials | Raw<br>Materials for<br>Coatings | Raw Materials for<br>Functional Fluids       | Products for<br>Filtration and<br>Separation |
| LIFE<br>SCIENCE                                 | Raw Materials for<br>Personal Care | Raw Materials for<br>Nutritional<br>Supplements and<br>Foods          | Pharmaceutical<br>Ingredients    | Products for<br>Filtration and<br>Separation |                                              |
| Inverted ribbon phyllosilicates                 |                                    |                                                                       | Slide 3                          |                                              | HVOSS                                        |



SPECIAL CHEMICALS AND INDUSTRIAL MINERALS

Raw materials for paints/coatings, inks, construction chemicals, adhesives/sealants, and industrial applications

Rheology Modifiers

Saturated Polyester Resins Lightweight Functional Fillers



Inverted ribbon phyllosilicates

# Raw materials for coatings

SPECIAL CHEMICALS AND INDUSTRIAL MINERALS



Main technical activities in Wandsbek (Hamburg):

 $\rightarrow$  Testing, Development and Application

Comprehensive testing methods

- Mechanical Materials Testing
- Thermal Analysis (TGA, TMA, PDSC)
- Optical Methods (Colorimetry, PSD)
- Particle Analysis
- IR Spectroscopy
- Anti-wear Friction (VKA, SRV)
- Corrosion Tests (Salt Spray, Humidity)
- Titration, Viscosity, Filtration, Demulsibility, Penetration



#### What are coatings?

- Coating are fluids that when applied to a surface form a solid, continuous, adherent film or barrier
- This film is designed to enhance, beautify, or protect the surface to which it has been applied
  - Substrate protection
  - Aesthetics
  - Durability





# What is in a coating?

- Binders
- Pigments
- Extenders or Fillers
- Solvents
- Rheology Modifiers
- Miscellaneous Additives



# What is in a coating?

- Binders
- Pigments
- Extenders or Fillers
- Solvents
- Rheology Modifiers
  - Raw materials that can change the flow characteristics of a liquid coating
    - The coating must be easy to mix/pump/package...
    - ...and it cannot settle in the can...
    - ...and it must be fluid enough to spray/roll/brush...(brush resistance, no spatter)
    - ...and it cannot sag/drip once applied...
    - ...and it must for a nice-looking film...(good levelling)
- Miscellaneous Additives





### **Focus on rheology modifiers**

- In addition to modifying viscosity and structure, these additives may affect
  - water demand (total solids)
  - open time
  - wet adhesion to substrates
  - dry adhesion
  - durability of contact materials
  - bleeding
  - water resistance
  - water vapor permeability
  - freeze/thaw resistance
  - crack bridging or prevention
- The most common types of rheology modifiers are:
  - fumed silica
  - **clays** (Phyllosilicates)
  - castor oil derivatives
  - polyamides
  - cellulosics
  - associative thickeners and alkali swellable polymers





#### **Clays for waterborne coatings**

- Phyllosilicate clays used as rheology modifiers for waterborne systems are of various types:
  - Lamellar structures (plates)
  - Acicular structures (needles)
  - Ribbon structures





# **Properties of phyllosilicates use in coatings**

| Characteristic                      | Plate   | Layered | Ribbon  | Needle  |
|-------------------------------------|---------|---------|---------|---------|
| Cation exchange capacity (meg/100g) | 70-120  | 20-30   | 10-15   | 10-15   |
| Surface (m²/g)                      | 30-100  | 70-160  | 280-340 | 120-150 |
| Swelling                            | yes     | yes     | no      | no      |
| Whiteness – GEB (%)                 | 30-85   | <60     | >60     | >60     |
| Hardness (Mohs)                     | 1.5-2.0 | 1.0-2.0 | 2.0-2.5 | 2.0-2.5 |



#### Inverted ribbon phyllosilicates – structure







Ribbon phyllosilicate in natura

Ribbon phyllosilicate after milling

Ribbon phyllosilicate in water



Inverted ribbon phyllosilicates



#### Inverted ribbon phyllosilicates – structure





#### **Inverted ribbon phyllosilicates – characteristics**

- Inverted Ribbon Phyllosilicates (IRP) do not swell in water, unlike other clays
  - Low water affinity is beneficial after drying (roof and wall coatings)
- IRP are easy to disperse, even in dry-mix formulations
- The ribbon structure leads to better anti-settling properties
- IRP gel formation is independent of ionic strength pH changes or presence of salts will not affect the gel
- The gel structure of IRP collapses quickly upon stress (shear-thinning) and the large surface area allows for fast rebuild (thickening) after shear is removed



#### Inverted ribbon phyllosilicates – water resistance

- Unlike other materials, IRP do not absorb water once the coating is dry
- This is important for applications requiring water resistance, such as roof coatings and walls exposed to humid environments (enhanced coating and substrate life)







#### **Inverted ribbon phyllosilicates – characteristics**

- Inverted Ribbon Phyllosilicates (IRP) do not swell in water, unlike other clays
- IRP are easy to disperse, even in dry-mix formulations
  - Easy to process/incorporate
  - Easy to reincorporate if settling does occur
  - IRP are also used in dry-mix products
- The ribbon structure leads to better anti-settling properties
- IRP gel formation is independent of ionic strength pH changes or presence of salts will not affect the gel
- The gel structure of IRP collapses quickly upon stress (shear-thinning) and the large surface area allows for fast rebuild (thickening) after shear is removed



# Inverted ribbon phyllosilicates – activation

DRY FORM 5 – 50 µm AGGREGATES 1 – 5 μm ELEMENTARY PARTICLES 0.1 – 2 μm

Slide 17

- High speed mixing is best
- The mixing process is speed- and time-controlled (no temperature control needed)
- IRP are fully activated if viscosity does not increase with additional mixing

Easy and reproducible incorporation, if time and shear rates are controlled







#### **Inverted ribbon phyllosilicates – characteristics**

- Inverted Ribbon Phyllosilicates (IRP) do not swell in water, unlike other clays
- IRP are easy to disperse, even in dry-mix formulations
- The ribbon structure leads to better anti-settling properties
  - Very good in-can stability
  - Very good storage and transportation stability
- IRP gel formation is independent of ionic strength pH changes or presence of salts will not affect the gel
- The gel structure of IRP collapses quickly upon stress (shear-thinning) and the large surface area allows for fast rebuild (thickening) after shear is removed



# Inverted ribbon phyllosilicates – stability







Stress Sweep (5% in tap water): gels remain stable, stored for six

#### **Inverted ribbon phyllosilicates – characteristics**

- Inverted Ribbon Phyllosilicates (IRP) do not swell in water, unlike other clays
- IRP are easy to disperse, even in dry-mix formulations
- The ribbon structure leads to better anti-settling properties
- IRP gel formation is independent of ionic strength pH changes or presence of salts will not affect the gel
  - Allows for formulations with very different pH ranges
  - The presence of hard water or salt water does not affect performance
- The gel structure of IRP collapses quickly upon stress (shear-thinning) and the large surface area allows for fast rebuild (thickening) after shear is removed





#### **Inverted ribbon phyllosilicates – ionic stability**





Influence of electrolytes on 5% gel stability (A- IRP, B- layered silicates)





#### Lamellar phyllosilicates – ionic stability



Amplitude sweep (5% additive): effect of electrolytes on gel stability of lamellar phyllosilicates



#### Inverted ribbon phyllosilicates – ionic stability



Amplitude sweep (5% additive): effect of electrolytes on stability of IRP gel



Inverted ribbon phyllosilicates

## Inverted ribbon phyllosilicates – ionic stability



Viscosity curves (5% in saturated NaCl solution): viscosity of bentonite is reduced, while viscosity of IRP remains unchanged





#### **Inverted ribbon phyllosilicates – characteristics**

- Inverted Ribbon Phyllosilicates (IRP) do not swell in water, unlike other clays
- IRP are easy to disperse, even in dry-mix formulations
- The ribbon structure leads to better anti-settling properties
- IRP gel formation is independent of ionic strength pH changes or presence of salts will not affect the gel
- The gel structure of IRP collapses quickly upon stress (shear-thinning) and the large surface area allows for fast rebuild (thickening) after shear is removed
  - Very stable structure at rest
  - Shear causes thinning, thus good pumpability/rolling/brushing
  - Low viscosity translates as good flow on substrate
  - Once shear is removed, gel rebuilds quickly, thus no sagging/dripping
  - Ideal for spray applications



#### Inverted ribbon phyllosilicates – effect of shear



Shear jump (5% in tap water): viscosity reduction of IRP is stronger





Inverted ribbon phyllosilicates

# Inverted ribbon phyllosilicates – effect of shear





## Inverted ribbon phyllosilicates – effect of shear



Very fast response to changes in shear

 Ideal additive for applications such as airless spraying, roller coating, troweling



#### **Inverted ribbon phyllosilicates – appearance**



Bentonite

IRP



Inverted ribbon phyllosilicates

| Matte topcoat            | Mass (g) |  |
|--------------------------|----------|--|
| DI water                 | 20       |  |
| Rheology modifier        | 1        |  |
| Acrylic resin            | 25       |  |
| Isobutanol               | 2        |  |
| Dispersant               | 0,7      |  |
| TiO <sub>2</sub> pigment | 7,9      |  |
| BaSO <sub>4</sub> filler | 25       |  |
| Resin                    | 12,4     |  |
| Butyl glycol             | 2        |  |
| DI water                 | 3,2      |  |
| Defoamer                 | 0,8      |  |















No additive Whiteness: 86.8 Viscosity: 0.3 Pa·s Synthetic Hectorite Whiteness: 89.6 Viscosity: 2.0 Pa·s Ribbon phyllosilicate Whiteness: 87.1 Viscosity: 3.0 Pa·s







# Inverted ribbon phyllosilicates vs. other additives

| Characteristic   | Bentonite | Cellulosics | Starch ethers | Ribbon    |
|------------------|-----------|-------------|---------------|-----------|
| Water retention  | High      | Very high   | Very high     | Very low  |
| Swelling         | High      | None        | None          | None      |
| Shear thinning   | High      | Low         | Low           | Very high |
| Thickening       | High      | Very high   | Very high     | High      |
| Anti-settling    | High      | Low         | Medium        | Very high |
| Anti-sagging     | Very high | Medium      | Very high     | Very high |
| Heat resistance  | High      | Medium      | Medium        | Very high |
| Salt resistance  | Low       | High        | High          | Very high |
| pH working range | 4-14      | 6-14        | 6-14          | 2-14      |



# Inverted ribbon phyllosilicates – types

- S
- SE (easier incorporation)
- LV (organically modified, higher viscosity build)
- S/240 (gap bridging)



#### **Back to coatings...with IRP**

- Inverted ribbon phyllosilicates are highly effective inorganic rheological additives
- IRP have a strong shear thinning flow profile and thixotropic properties
  - Easy incorporation
  - Easy application
  - Excellent appearance
  - Low sagging and dripping
- IRP form soft stable viscoelastic gels in a wide range of waterborne formulations
- Stable over a wide pH range (2-14) stable and even in presence of high electrolyte concentrations



# Thank you!

#### **Contact:**

Marcelo Herszenhaut Commercial Manager Surface Technology North America <u>marcelo.herszenhaut@lehvoss.com</u> Tel.: +1-678-294-2972





