

High-Touch Coatings with Continuously Active Antimicrobial Functionality

Mark Langille, Ph.D.

Commercial Technology Manager, Corning Specialty Surfaces Corning Incorporated

Bactericidal and Virucidal Surface Coatings

- Viruses and other germs are here to stay ...and active surfaces are a life-changing innovation to help combat them
- Continuously active coatings
 - Can reduce the level of re-contamination on high touch surfaces
 - Provide antimicrobial efficacy between regular cleaning and disinfection protocols

 Antimicrobial coating technologies have advanced significantly, but there are still challenges...

Performance Requirements for Antimicrobial Surfaces

- Address real-world surface contamination
 - Composed of multiple types of germs
 - Occurs at room temperatures and humidity
 - Dries quickly
- Long-lasting antimicrobial activity
 - Remains active throughout use, including exposure to typical wear and cleaning
- Performance, protection, and aesthetic requirements must also be met

Non-Enveloped Viruses (Norovirus)

Gram-Negative Bacteria (Pseudomonas aeruginosa)

Easier-to-Kill

Gram-Positive Bacteria (Staphylococcus aureus)

Enveloped Viruses (SARS-CoV-2)

Challenges for High-Touch Coatings

- High-touch surfaces are protected by high-performance coatings
- Factors that enhance coating performance can be detrimental to antimicrobial activity
 - Ion transport, molecular diffusion
- High-performance coatings are finely tuned and sensitive to formulation changes

US EPA Regulates Public Health Claims Against Human Pathogens

- Formalized guidance established in 2022 for products adding residual efficacy claims
- Guidance includes test methods for demonstrating residual bactericidal and virucidal activity
- Example public health claims:
 - Kills 99.9% of viruses and bacteria within two hours of contact on the coated surface
 - Continuously kills viruses and bacteria on the coated surface within 2 hours of exposure for up to 5 years
- Public health claims are not the same as "treated article" claims
 - Claims to protect the article or substance itself can be exempt from registration
 - Example treated article claims:
 - Kills odor and stain causing bacteria
 - Stain and odor-resistant
 - Specially formulated to resist mildew growth on the paint film
 - Article treated to resist deterioration by mold fungus

Understanding Laboratory-Based Antimicrobial Test Methods

Wet Test

versus

Dry Test

24 Hour Test

Elevated **Temperature** and Humidity

Example Test Methods: ISO 22196, ISO 21702, JIS Z 2801

Typical test method used for substantiating treated article claims

Dry Surface

2 Hour Test

Temperature and Humidity

Example Test Methods: US EPA MB-41-00 and MB-40-00, OECD Splash Test

> Test method required for US EPAregistered public health claims

Dry Test Conditions Simulate Real-World Contamination Events

Bactericidal Efficacy Testing

 Bacteria prepared with soil load
 'Dry' test volumes of bacteria applied to coupon
 Bacteria spread evenly across coupon
 Drying of inoculum occurs during a 2-hour exposure
 Bacteria collected and incubated on agar
 Colonies counted after 48 hours

 Image: Colonies coupon
 Image: Colonies coupon

Results are reported as a log-scale reduction of organisms on a test sample versus a control

5 log kill \rightarrow 99.999% reduction

- 4 log kill \rightarrow 99.99% reduction
- 3 log kill \rightarrow 99.9% reduction (Required performance for US EPA registration)
- 2 log kill \rightarrow 99% reduction
- 1 log kill \rightarrow 90% reduction

Residual Efficacy Testing – Simulated Wear Procedure

1 Wear cycle = 4 Passes of sponge over coating = 1 Month of cleaning

Bactericidal or virucidal efficacy testing is repeated on coatings subjected to simulated wear.

Literature Search Indicates Few Technologies Pass Dry Test Conditions Against A Broad Spectrum of Microbes

		Inorganics			Organics		
		Silver	Zinc	Copper	Titanium Dioxide	Quaternary Ammonium Compounds	Isothiazolinones
	Non-Enveloped Viruses	×	×	\bigotimes	×	×	×
F	Gram-Negative Bacteria	×	×	\bigotimes	×	8	×
< CO	Gram-Positive Bacteria	×	×	\bigotimes	×	\bigotimes	×
	Enveloped Viruses	8	8	\bigotimes	×	\bigotimes	×

SOURCE:

10

Ikner, L. A., Gerba, C. P., 2021, 'Antiviral Coatings as Continuously Active Disinfectants', in D. R. Nims, D. M. Khalid (eds.), Disinfection of Viruses, IntechOpen, London. 10.5772/intechopen.101752 Williams, Terry M. "The Mechanism of Action of Isothiazolone Biocide." Paper presented at the CORROSION 2006, San Diego, California (March 2006) Michels H.T. "Effects of temperature and humidity o the efficacy of methicillin-resistant Staphylococcus aureus challanged antimicrobial materials containing silver and copper. Letters in Applied Microbiology (2009)

Copper is A Powerful, Natural Antimicrobial

HEALTH

Smithsonian

11

Copper's Virus-Killing Powers Were Known Even to the Ancients

Correst Education of the

The SARS-CoV-2 virus endures for days on plastic or metal but disintegrates soon after landing on copper surfaces. Here's why

Benefits

Kills >99.9% bacteria (*Staph, E.coli, MRSA*)*

Kills >99.9% viruses (Flu & cold viruses, Norovirus, Sars-CoV-2)

Favorable animal toxicity

Enable long-term antimicrobial potency

No off-gassing

Reduced risk of leading to antimicrobial resistance

*Gross, T.M., Lahiri, J., Golas, A. et al. Nat Commun 10, 1979 (2019). https://doi.org/10.1038/s41467-019-09946-9

Civilizations have recognized copper's antimicrobial properties for centuries. It's time to bring the material back.

A Copper-Glass Antimicrobial Additive

The Copper-Glass Stabilizes Cu¹⁺

Continuous Phase
Discontinuous Phase
Copper(I) Oxide Crystals

Stabilized in the Copper-Glass

Copper-Glass Morphology is Critical to Antimicrobial Efficacy

Before Exposure to Water

After Exposure to Water

- Discontinuous phase dissolves
 in water
- Cu¹⁺ enables bactericidal and virucidal properties of the material that the copper-glass is incorporated into
- Use rates of 1% copper-glass by weight on total formulation are typical (~ 50 grams of copper-glass per gallon of coating)

Achieving Long-Lasting Antimicrobial Activity in Coatings

Performance requirements:

- Cu¹⁺ must retain antimicrobial activity
 - Inhibit oxidation to Cu²⁺
 - Inhibit reactivity with other materials
- Cu¹⁺ must be available at the coating surface
 - In sufficient quantity
 - Sufficiently stable to provide long-lasting antimicrobial efficacy, even through cycles of washing and cleaning

Real-Time Aging of Copper-Glass Coatings

Formulation Ingredients Can Influence Antimicrobial Activity

- Commercial coatings dosed with copper-glass can show variable dose-dependent antimicrobial activity
- It can be difficult to identify which raw materials may be detrimental to antimicrobial efficacy

0 g/Gal Copper-Glass (Control)
5 g/Gal Copper-Glass
10 g/Gal Copper-Glass
20 g/Gal Copper-Glass
40 g/Gal Copper-Glass

Challenges for High-Touch, High-Performance Coatings

Waterborne Direct-to-metal Coating

- Antimicrobial efficacy can be more challenged for some high-performance coatings, such as waterborne direct-to-metal (DTM) coatings
- Challenges can arise for initial or long-term antimicrobial efficacy, depending on the formulation
- Polymer-rich, high gloss, and low porosity coatings may prevent adequate accessibility of Cu¹⁺ to organisms on the surface of the coating

A New Approach: Formulating Copper-Glass With Additives

DTM Coating with 2% Copper-Glass and Various Additives

- Rather than focusing on reformulating coatings to remove incompatible materials, we focused on identifying additives to assist in controlling the stability and availability of the copper-glass
- Additive chemistries have been identified that enable long-term antimicrobial performance in high-touch coatings

Additives enabling long-term, full kill antimicrobial performance

Analytical Tools to Guide Development Work

- Analytical tools were developed to quantify Cu¹⁺ and total copper concentrations (Cu¹⁺ + Cu²⁺) in coating formulations
 1200
 E
- Copper quantification assists in diagnosing mechanisms leading to poor antimicrobial performance and drives additive selection

Copper-Glass Also Enables Antimicrobial Efficacy in Other High-Touch Materials, Including Plastics

- Copper-glass can enable long-term antimicrobial efficacy in a variety of plastics
- Antimicrobial efficacy can be maintained in pigmented formulations
- Evaluations of additional plastic chemistries in progress

Thermoplastic	Copper-Glass Concentration	Additive Concentration	Full Kill Efficacy*			
Polyurethane Elastomer (Polyether)	1%	1%	12+ months			
Nylon (PA6)	2%	2%	12+ months			
PVC	3%	3%	6+ months			

* Last data point collected

Summary

- Viruses and other germs are here to stay ...and active surfaces are a life-changing innovation to help combat them
- Public health claims against human pathogens are regulated by the US EPA and require bactericidal and virucidal testing under 'dry' conditions
- Copper is one of the few technologies that can pass dry test protocols against a broad spectrum of microbes
- The use of additives in combination with a copper-glass antimicrobial can enable many high-touch, high-performance coatings, like DTM coatings, to achieve long-lasting antimicrobial efficacy
- Additives formulated with copper-glass antimicrobials can eliminate the need for making significant formulation changes and more easily enables current commercial formulations to add antimicrobial functionality

Acknowledgements

- Anthony G. Frutos
- Johnathan D. Culpepper
- Theresa Chang
- Jackie L. Kurzejewski
- Brandon M. Smith
- Ashley R. Clark
- Sean N. Sacks

- David Fasano
- Xiaole Cheng
- Travis P. Moshier
- Avantika Golas
- Bavani Balakrisnan
- Joydeep Lahiri

Thank You!

Mark Langille, Ph.D. Commercial Technology Manager, Corning Specialty Surfaces Corning Incorporated

Email: LangilleMR@corning.com Office: (607) 974-4949 Mobile: (607) 454-7450