High Performance Environmentally Compliant Two-component Waterborne Urethane Dispersions

Matt Dunn, (Eric Broz, Ximing Li, Alec Krienen, Gabor Erdodi, Miriam Peralta)

Lubrizol Advanced Materials

Coatings Trends and Technologies Conference 2023

Agenda

- Enabling a Sustainable Future with Lubrizol: KEY INNOVATION PROGRAMS
- Polyurethane Dispersion: Responsible Design, Sourcing and Use
- Performance: Wood Coatings
- Summary

Resins to Formulate Coatings with Reduced Environmental Impact

Lubrizol Innovation Drivers

Enabling a Sustainable Future with Lubrizol: Putting Sustainability into our Chemistry

Enabling a Sustainable Future with Lubrizol

Putting sustainability into our chemistry

Key Innovation Sustainable Programs

Lubrizol Performance Coatings is committed to **maximizing our handprint** by offering innovative **solutions with reduced environmental impact** that enable our customers to achieve their sustainability goals.

Reduce emissions (VOCs) Eliminate chemicals of concern (ADH, APEO...)

Improved Productivity: Simplify the paint process Building capability in biobased raw materials

Enabling water, waste & energy reduction through high solids resins.

- VOC (Volatile Organic Component)
- ADH (Adipic Acid Dihydrazide)
- APEO (Alkylphenol ethoxylates)

MAXIMIZING OUR HANDPRINT

MINIMIZING

OUR FOOTPRINT

5

Polyurethane dispersion: Responsible design, sourcing & use

Responsible design: Synthesis of waterborne polyurethane

Develop a urethane dispersion for a sustainable, user-friendly, wood coating.

Structure Property Design: Compositional Drivers

Structure Property Design: Urethane Morphology

Optimize urethane **MORPHOLOGY**

- ✓ Reduction/elimination of hazardous components: Crosslinkers
- ✓ Performance: Crosslinking efficiency
- ✓ Film formation at low temperatures

9

Structure Property Design: PUD Morphology

DRIVER

Optimize urethane **MORPHOLOGY**

URETHANE FUNCTIONALITY – CROSSLINKER REACTIVITY

TRADITIONAL DISPERSION

- Uniform composition
- Carboxylic functionalities inside particles
 - Internal carboxylic groups less reactive
 - Lower effective acid number for crosslinking

NEW TECHNOLOGY DISPERSION

- □ Transfer the carboxylic groups to the surface:
 - More available to react
- □ Higher effective acid number:
 - More effective crosslinking
- Decreases MFFT

Carbodiimide reactivity issue was addressed by improving the reactivity of the functional groups on the resin. Better efficiency with environmentally friendly polymeric carbodiimide crosslinkers.

Structure Property Design: High Solids PUD

Develop a viable urethane **PRODUCTION PROCESS**:

✓ Define compositional and process boundaries of new technology dispersion and...
HIGH SOLIDS PUD

Improve productivity and application efficiency

3

New Polyurethane Dispersion: Responsible design, sourcing & use

- Renewable Content in Polyamide-based PUDs
- Reduction / Elimination of Regulated Components: VOC
- Elimination of Regulated Components: TEA (Triethylamine)
- Elimination of Regulated Components: Crosslinker Isocyanate & ADH
- Manufacturing Methods: Use of Resources, Energy, and Waste in Production / Application

PERFORMANCE COMPARISON

EFFECT OF NEUTRALIZER

Polymer #	Components	Crosslinker	Resin Solid% (wt%)	Bio Content (wt%)	VOC (g/l) EPA Method 24	VOC (g/l) iso 11890-2	Number of Coats
APT-1	2K	Carbodiimide	45	34	100	40	2
APT-2	2K	Carbodiimide	45	34	100	40	2
APT-3	2K	Carbodiimide	45	34	100	40	2
Benchmark-1	1K	ADH	35	0	140	46	3*
Benchmark-2	2K	ISOCYANATE	41	0	288	130	3*
Benchmark-3	2K	ISOCYANATE	32	0	230	85	3**

*Three coat.

**Two coats over a sealer.

Experimental PUDs and Commercial Benchmarks

EFFECT OF NEUTRALIZER

Samples	Gloss	Konig Hardness		COF	Hot Pan Test		Taber Abrasion Weight loss (mg)	Black Heel Mark	Black Heel Mark after cleaning by 70% IPA (10 best)			
. (60)		(Oscilations)			Whitening (5 best)	Printing (5 best)	after 1000 cycles	(10 best)				
APT-1	77		50		0.58	5	5	73	7		8	
APT-2	82		50		0.56	5	4	60	2.5		6	
APT-3	66		51		0.61	5	5	67	2.5		6	
Benchmark-1	89		39		0.54	3	3	50	3		7	
Benchmark-2	85		54		0.46	5	5	35	2		5	
Benchmark-3	56		53		0.50	5	5	60	7.5		9	
											V	

Mechanical properties, thermal resistance and gloss of polyamide-based polyurethane

EFFECT OF NEUTRALIZER

APT-1 neutralized by amine alternative A provides good black heel mark resistance.

Excellent chemical resistance for gloss, matte and pigmented formulations

WEATHERING PERFORMANCE

		Wea	therometer X	QUV				
System	Initial	500 hours	% Gloss Retention	1000 hours	% Gloss Retention	Initial	750 hours	% Gloss Retention
APT-1	116	111	96%	113.7	98%	116	108.7	94%
Benchmark-3	106	105	99%	85.8	81%	106.1	60.8	57%
	A	PT-1	Benchmark-3	Benchmark-3		JV Test Ph	Benchmark-3	

Polyamide PUD provides excellent weathering resistance and gloss retention.

FREEZE-THAW RESISTANCE OF THE CLEAR PAINT

ASTM D2243-95 was followed: Put the paints in the chamber at -18° C (0°F). For one cycle, keep in the chamber for 17 h and then remove and allow to stand for 7 h at room temperature, for a complete freeze-thaw cycle of 24 h. Viscosity and film formation were checked for each cycle.

Polyamide PUD has good freeze-thaw resistance.

Conclusions

A New Urethane for Wood Coatings has been developed

Balance of properties in the novel high-performance BIO PUD for sustainable coating solutions

Acknowledgments

- Ximing Li
- Alec Krienan
- Amanda Kenmuir
- Chandra Pandey
- Jonathan Bird
- Smita Brijmohan
- Lee Young

Appendix 1: Test Methods

Taber abrasion: According to ASTM D4060. CS-17 resilient Calibrase wheels was used to provide abrasion while rotating on tested sample for 1000 cycles. The wheels were resurfaced, and weight loss was recorded per each 250 cycles.

Coefficient of friction (COF): ASTM D2047-17 was followed to check the static coefficient of friction of painted maple board measured by <u>James</u> <u>Machine Coefficient of Friction Tester</u>.

Konig hardness: Apply the prepared paints on aluminum panels and cure the panels at ambient temperature for a week. Following ASTM D4366, hardness was measured using a Pendulum Tester.

Gloss: ASTM Standard D 523 was followed to measure gloss by using a glossmeter.

Hot-Pan water resistance test: A wet cheese cloth is placed on a painted wood surface and a 250 ml stainless-steel cup with boiling water is placed on top of the cheese cloth for 1 hour. The cheese cloth and cup are then removed and the area on which they were resting is given a rating from 0-5, five being the best, corresponding to the level of whitening and printing that occurs.

Chemical resistance: German DIN 68861-1:2011-01 standard was used, a spot test, with 16h exposure time in category 1A. Exposure time was shorter for chemicals that completely failed before 16 hours (category 1B or 1C).

Black heel mark: This scratch resistance test method was developed in the lab, as shown in Figure 1. An ice hockey puck, made of solid vulcanized rubber, is used to simulate black heel. In the test a coating sample board is placed on the floor at 15° angle below the scuff tester which is oriented horizontally then allowed to drop and hit the sample. The mark left behind is rated from 0 to 10, the higher score the better performance the coating provides.

Black Heel Mark Score (10 best)

Appendix 2: Formulation

Material	% Weight
Part A	
Polyamide Polyurethane (45% T.S.)	82.91
D.I. Water	8.36
Defoamer	0.01
DPnB glycol ether	3.72
Total	95.00
Part B	
Carbodiimide	5.00
Total	100.00

Coating formulation for new urethane dispersions

