



## **Coatings Trends & Technologies SUMMIT** UV-A Cured Hard Coat Repair

# for Bolycarbonato Hoad Light Longo

## **Polycarbonate Head Light Lenses**

Michael J. Dvorchak

Phone: 412-996-5225

E-Mail: miked@isharkskin.com







#### Introduction

- Current products in the market
- OEM Style UV A Refinish Hard coats for refinishing deteriorated PC head lights
- New advanced oligomer technology for PC refinishing
- UV A light sources
- Conclusions
- References

### Outline

# Introduction

- Auto industry has changed from glass to polycarbonate plastics (PC) for weight reduction and safety.
- Deterioration over time of the UV cured hard coat used to protect the PC head light
- Today there is an estimated 278 million vehicles in the US
- A total of 556 million PC head lamps
- Average age of a vehicle in the US is 12.2 years
- Technology for repair ranges from tooth paste to an OEM style 1 K UV – A refinishing hard coat



Current products in the market to solve the deteriorated PC head lights

- This PC head lights output as measured by a Hoppy Vision 100 light reader gave the following values:
  - LOW BEAM; 3,000 Candela
  - HIGH BEAM; 7,000 Candela



### Products introduced to resolve the deteriorated PC Head Light UV Cure Hard Coat

- Sanding and polishing to rejuvenate the deteriorated PC Head Light<sup>(1)</sup>
- Removal of the deteriorated PC hard coat and application of a sealant reported to last 2 years
   <sup>(2)</sup>
- Of the 20 techniques surveyed half reported using only a sanding and polishing technique while the other half reported using a sealant after removal of the deteriorated UV hard coat
- Another reports the use of a 2K PUR that is traditionally used in the auto refinish market <sup>(3)</sup>



Introduction of an OEM style UV – A refinish hard coat to repair deteriorated PC head lights

- In 2005 a repair technique was introduced that used polymer technology that mimic the OEM style UV cure hard coats <sup>(4)</sup>
- Two patent applications were submitted in 2004 <sup>(5)</sup> and 2005 <sup>(6)</sup> that reports the removal and application of a sealer or coating.
- Regardless of the technique employed; the ability to upgrade the head lamp close to the original standard is important to the vehicle owner



OEM Style UV – A Refinish Hard coats for refinishing deteriorated PC head lights

- Using technology from the OEM UV hard coat technology was incorporated in a paper that describes new oligomer technology <sup>(7)</sup>
- The PC head light itself is already protected with UV-absorbers and HALS-amines
- In addition; the UV hard coat formulation needs to incorporate UV-absorbers and HALS-amines



OEM Style UV – A Refinish Hard coats for refinishing deteriorated PC head lights

• Formulation is the type and style of a formulation that has a proven track record in the OEM automotive headlight environment





| Formulation        | Function                               | %<br>by weight |  |
|--------------------|----------------------------------------|----------------|--|
| UV-curing oilgomer | resin                                  | 80             |  |
| Monomer            | react. thinner                         | 80             |  |
| BAPO               | UV-initiator                           | 4.9            |  |
| Additive           | leveling agent                         | 1.6            |  |
| Additive           | UV-absorber                            | 3.8            |  |
| Additive           | HALS-amine                             | 1.7            |  |
| Curing             | 1,800 mJ/cm <sup>2</sup> (Hg spectrum) |                |  |
| DFT                | ca. 25 μm                              |                |  |
| Substrate          | PC (UV-absorber/HALS-amine)            |                |  |

8

OEM Style UV – A Refinish Hard coats for refinishing deteriorated PC head lights

 This table shows the relationship of high-performance UV oligomers used in the OEM UV Hard coat market



| Urethane<br>Acrylate                                     | ISO11341<br>Xenon Test | CAM 180 | UV - B |  |  |  |
|----------------------------------------------------------|------------------------|---------|--------|--|--|--|
| ECHO                                                     | > 5000 h               | 5000 h  | 2500 h |  |  |  |
| Fox Trot 1                                               | 3750 h                 | 3250 h  | 2500 h |  |  |  |
| Alpha 1                                                  | >4000 h                | >4000 h | 2500 h |  |  |  |
| Bravo 1                                                  | 5000 h                 | 5000 h  | 2500 h |  |  |  |
| Delta 1                                                  | 3000 h                 | 3000 h  | 2500 h |  |  |  |
| Test parameters: Chalking, adhesion, cracks,<br>blisters |                        |         |        |  |  |  |



# OEM Style UV – A Refinish Hard coats for refinishing deteriorated PC head lights

- PC head lights output as measured by a Hoppy Vision 100 light reader gave the following values:
  - LOW BEAM before refinishing; 3,000 Candela
  - LOW Beam after refinishing; 7,000 Candela
  - HIGH BEAM before refinishing;
    7,000 Candela
  - HIGH BEAM after refinishing; 17,000 Candela

Advanced oligomer technology for the PC Head Lamp refinishing market

| Urethane Acrylate                                 | Alpha 1                                                                                      | Bravo 1                                                                                    | Echo                                                                                             | Delta 1                                                                                                         |
|---------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Form supplied                                     | 100 %                                                                                        | 100 %                                                                                      | 80% (20% monomer)                                                                                | 100 %                                                                                                           |
| Type; aliphatic urethane                          | allophanate                                                                                  | allophanate                                                                                | polyisocyanurate                                                                                 | allophanate                                                                                                     |
| Viscosity (23 °C, mPas)                           | ca. 60,000                                                                                   | ca. 35,000                                                                                 | ca. 34,000                                                                                       | ca. 8,000                                                                                                       |
| Hazen colour value                                | < 100                                                                                        | < 100                                                                                      | < 100                                                                                            | < 100                                                                                                           |
| Molecular weight, g/mol (GPC)                     | ca. 1,100                                                                                    | 800                                                                                        | 1,400                                                                                            | 1,250                                                                                                           |
| Functionality cal.                                | ca. 4                                                                                        | са. 3                                                                                      | ca.3                                                                                             | ca.3                                                                                                            |
| Double bond density , Val/kg                      | ca. 3.8                                                                                      | ca. 4.1                                                                                    | ca. 1.6                                                                                          | ca. 2.8                                                                                                         |
| UV reactivity<br>(3 %, Dar. 1173, 1 lamp 80 W/cm) | ca. 25 m/min<br>ca. 140 mJ/cm²                                                               | ca. 10 m/min<br>ca. 450 mJ/cm²                                                             | ca. 20.0 m/min<br>ca. 155 mJ/cm²                                                                 | ca. 7,5 m/min<br>ca. 450 mJ/cm²                                                                                 |
| Pendelum hardness                                 | ca. 140                                                                                      | ca. 170                                                                                    | ca. 180                                                                                          | ca. 60                                                                                                          |
| Tg in ℃                                           | ca. 65                                                                                       | ca. 80                                                                                     | ca. 75                                                                                           | ca. 30                                                                                                          |
| Elongation at break in %                          | ca. 4                                                                                        | са. 3                                                                                      | ca. 2                                                                                            | ca. 17                                                                                                          |
| Tensile strength in N/ mm <sup>2</sup>            | ca. 65                                                                                       | ca. 40                                                                                     | ca. 20                                                                                           | ca. 22                                                                                                          |
| Special properties                                | Balanced properties, high<br>scratch resistance com-<br>bined with high fct. oligo-<br>mers. | Well balanced properties,<br>good barrier against water<br>and corrosive environ-<br>ment. | High reactivity and hard-<br>ness, high resistance<br>against mechanical and<br>chemical attack. | Product is designed to<br>adjust flexibility com-<br>bined with the other<br>allophanate urethane<br>acrylates. |

 $\mathbf{O}$ 

Advanced UV Cure oligomer technology for the PC Head Lamp refinishing market

- This photo shows 36 months of service in the North-Eastern part of the US.
- Only limited degradation to the OEM
  Style Refinishing UV A Cured Hard Coat
  is found.



UV – A cure light sources for use within the automotive PC head light refinishing market

- Top Photo shows the development of a UV – A curing lamp for use in refinishing deteriorated PC head lights
- Bottom Photo New hand held LED unit that uses traditional hand tool battery supply for potential use in PC head light repair
- Side Photo A lot of these products will sunshine cure (visible light photoinitiator)





## Conclusions

- The need for a OEM Style 1 K UV A refinish hard coat is obvious when you realize that there are over 556 million PC head lights in service today in the US
- With the average age of US vehicles hovering at 12.2 years; even 10 % of that market is a large new area for UV cure
- The development of a OEM Style 1 K UV A refinish hard coat will hope to resolve this important safety issue
- The use of the allophanate oligomer chemistry offers technology that will not require additional monomers

# References

- 1) 3M 39008 Headlight Lens Restoration; http://3mauto.com/products/headlight-restoration
- 2) Philips HRK00XH Headlight Restoration kit; http://www.p4c.philips.com/cgibin/cpindex.pl?ctn=HRK00XM&hlt=Link
- 3) The Illuminator; Cumberlandproductsinc.com; introduced at the SEMA show in 2011
- 4) Subramanian, R; UV Refinish for Plastic Headlamps, UV EB West 2005
- 5) US 7,404,988; Headlight Lens Resurfacing Apparatus and Method; , Terry, Mitchell Kunta
- 6) US 7,163,446; Vehicle Headlight Restoration; Cole et al.
- 7) Dvorchak, M. J., Henderson, K.A., Gambino, C.A., Acrylated Allophanate oligomers that are 100% solids with low viscosity and high functionality; RADTECH NA Conference, May 2010

# Thank you for your attention!

- Contact Information
- Michael J. Dvorchak
- Phone (cell); 412-996-5225
- Email; miked@isharkskin.com
- Web Site; dvorchakenterprisesllc.com



# BACK UP SLIDES





# Military Applications UV A Cure Battle Field Composite Repair



- KISS Principle
- Ballistic holes in composites
  - AK-47 or shrapnel
- Quick return to service
- Simple and quick process that returns the aircraft to service with eventual permanent repair at the depot
- Commercial air lines interested is this technique for remote location repair

### Basics of UV Curing Curing of Coatings with electromagnetic radiation



# Low Energy UV-A Lamps













# Low Intensity Microwave Lamp

- Quantum Technologies
- Low powered lamps
- Current UV-A lamp assembly has a series of bulbs from 320 to 400 nm
- Bulbs can be made to desired wavelength output



#### NEW UV-A Light Sources Automotive Refinish/Aerospace & Printing





- 1,200 W UVA Light
- H & S Auto Shot

- LED UVA
- Phoseon Technology