Organic-inorganic Hybrid (OIH) Low-temperature Curable System For Industrial Coatings.

Neda Hayeri & Vijay Mannari

Coating Research Institute

Eastern Michigan University

CTT Conference September 2023

AGENDA

Conventional Thermally Curable Coatings

Usually, High Temperature

Substrate Limitation

Thermally Resistance Substrates: 120 to 160 °C
Plastics: 80 to 90 °C

*Needs Flash-off time around 10 min and baking time around 20 to 30 min

High CO2 equivalent

High Energy Consumption

BACKGROUND

Conventional Sol-Gel Application Process

Silane precursor Water Alcohol Additives RO OR Acid Cat. RO Application ____ОН + R__ОН (Thermal Curing) —<mark>он</mark> + R—он RO H_2O ОН **Organo-Silane Precursor** Coating **Application Bath-Sol Deposition - Gel** Optimize / Control pH Solid Content • Water/alcohol ratio Solution age • 5 Withdrawal rate

INTRODUCTION

Challenges (Aqueous Process)

- Limited bath-solids
- Limited film thickness
- Limited self-life of application bath
 - Reduced operating freedom
- Needs careful monitoring of bath parameters
 pH, solids, concentration...
- Often require post-curing
 - extra step, time/energy consuming step
- Produces hazardous waste

UV-SOL-GEL

- Mannari et al, US Patent 11,414,524, Aug 16, 2022, Eastern Michigan University, USA
- Guillaume Bano, Céline Croutxé-Barghorn, Xavier Allonas / Laboratory of Macromolecular Photochemistry and Engineering / Mulhouse, France

Characterization-FT-IR

TEST

BIO-BASED PRECURSOR

Characterization- FT-IR

11

Coating Formulation

> Multi-Functional Silane Precursor; Petroleum-Based and Bio-Based

Curing Catalysts

✓ CXC-1612; King Industry (Thermally Blocked Super Acid)

Et

Et or Si

Reactive Diluent (TEOS)

Cure Study by FT-IR

Peak of Interest: 1050 cm⁻¹ to 1140 cm⁻¹

Reference Peak: C=O, 1721 cm⁻¹

Bruker-Tensor 27 FT-IR spectrometer in the range of 4000 to 500 cm⁻¹ wavelengths

Conversion (%) = 100 × 1
$$\frac{(A_{1087 cm^{-1}}/A_{1720 cm^{-1}})Cured}{(A_{1087 cm^{-1}}/A_{1720 cm^{-1}})UnCured}$$

5. Zareanshahraki, F. and Mannari, V. (2018), "Green" UV-LED gel nail polishes from bio-based materials. Int J Cosmet Sci, 40: 555-564. <u>https://doi.org/10.1111/ics.12497</u>

Curing in the oven (20 min at 90 °C)

✓ Variables

- **Solution** Binder Nature; Petroleum-Based and Bio-Based
- **♦ Curing Temperature**; 80 °C, 90 °C, 110 °C, 130 °C
- **Curing Time;** 5 min, 10 min, 15 min, 20 min

Analyze by MINITAB statistical software through Design of

Experiment (DOE)

Performance

- Primary properties have been tested.
- Significance in cure-extent across all curing conditions prompted evaluation of properties for each specific curing scenario.
 - MEK- Double Rub
 - König Pendulum Hardness
 - Static Contact Angle
 - Adhesion by Cross- Cut

RESULT

Chart of Mean(MEK-DR)- Petroleum-Based Binder

RESULT

Chart of Mean(MEK-DR)- Bio-Based Binder

Chart of Mean(Konig Hardness)- Petroleum-Based Binder

Mean of Konig Hardness

Chart of Mean(Konig Hardness)- Bio-Based Binder

Chart of Mean(Contact Angle)- Petroleum-Based Binder

RESULT

Chart of Mean(Contact Angle)- Bio-Based Binder

RESULT

Adhesion by Cross-Cut

All coatings, under various curing conditions, demonstrated satisfactory crosscut adhesion, achieving a grade 5B rating as per ASTM D3359.

RESULT

Reactive Diluent Study

► High solid, High Molecular Weight, High Viscosity, VOC

CONCLUSION

- New oligomers offer versatility in curing conditions, allowing for application at various temperatures and with different curing times.
- Synthesis of new oligomers has led to the creation of 100% solid and environmentally friendly options, both in Bio-Based and Petroleum-Based variants.
- The current progression involves the incorporation of environmentally safe reactive diluents in the formulation.
- ▶ The synthesis of oligomers with diverse backbones is currently in progress.
- The application of new oligomers has been successfully demonstrated on diverse substrates, including Metal and ABS, with ongoing investigations into results for other substrates.
- Formulation possibilities are extensive, enabling new oligomers to cater to a wide array of applications, such as Automotive Interiors, Clear-coats, Wood Coatings, Anti-Corrosion coatings, and Pre-treatments.

E-mail: <u>thaeri@emich.edu</u> *Eastern Michigan University*

ANY QUESTIONS