

Creating The Proper Infrastructure for AI-Driven Development

Thursday, September 07, 2023

Presented by

Noel Hollingsworth | CEO & Co-Founder | Uncountable

Agenda

01 | Introduction

02 | The Current Landscape: AI in R&D
03 | Considerations Before Implementing AI
04 | Understanding The Resources & Roadmap for AI
05 | Best Practices: Start Creating The Proper Infrastructure
06 | The Benefits of an All-in-One Data Infrastructure
07 | Q&A

Featured Speaker: Noel Hollingsworth

Noel Hollingsworth is Co-Founder and CEO at Uncountable. In his role, he works closely with Uncountable's customers to implement next-generation data management systems.

Prior to his work at Uncountable, Noel led data teams at startups and was awarded Forbes 30 under 30 for his work with machine learning and artificial intelligence.

CEO & Co-Founder Noel Hollingsworth

About Uncountable

Founded in 2016 with offices in San Francisco, New York City, and Munich

90+ customers across industries

including paints, rubbers, 3D printing, foams, cosmetics, alternative foods, and more!

One-of-a-kind platform

that centralizes R&D data and helps reduce new product development timelines

Proven domain expertise

began as a data science company helping Fortune 500 materials companies accelerate development of new projects.

Uncountable Proudly Supports Clients

That Span Across a Variety of Industries

01 | Introduction | About Uncountable

Or visit: www.uncountable.com/case-studies

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI
04 | Understanding The Resources & Roadmap for AI
05 | Best Practices: Start Creating The Proper Infrastructure
06 | The Benefits of an All-in-One Data Infrastructure
07 | Q&A

The Current Landscape: Al in R&D

• Modern Al in R&D

- There's a common misconception that rebranding as an AI company is as simple as having some off-the-shelf models or working with an AI vendor
- Al is complex, high-risk, expensive, and often requires significant business transformation to collect the data necessary
- 2018 reports: Implementing AI demands an ultra-specialized talent pool that only 22,000 PhDlevel experts worldwide

• Goals of AI*

https://link.springer.com/chapter/10.1007/978-3-030-50344-4_18

- More objective identification of user requirements to drive enterprise innovation
- More precise exploration of market trends
- Higher efficiency in product design
- Less risks in R&D process
- Improved knowledge sharing ability

Uncountable The Core Issue Many Fortune 500 R&D Teams Face is Unstructured, Decentralized Data

	1.1	1	181	¥		1	1		-		-	4	
120			-										
100								-					
10										-			
DMC.										а.			
											_		
		-	m)		-		-	-		-			
the case of the ca	Res:				****	1.8	66				Figure 1	60	Plant, 1
45.	HUTLI	98	æ.,		14-11	0.8	110					50	-
*** I	1000				10.01		500	6.65	21.M			0	
	98,08,0	18.	æ.,		18.11	1.1	1,994	525	•			•	M

and from the	Particular Test		2)-		1.04.04	-	-				-	-
11 100		10.	1.14	-	-		-	100	122	2.4	#	
- 2 41	and the state	80 J	13.7	The states	24	12	-		-	1.1		
			1.1	100								
and the second se				-								
-		-				- 2	- m	- 11				-
-					1		1		1	-	1	1
- -	1	1			1		1	- 2	1		1	
	1	and a second		- 11	1 444	1 11	-	- 1			-	
	1	and a	Total International	- mart	1.44		- Here	- 1111	-			
	1	and a	Times.	- mart	·	and a second	- Harre	- mann	-			11111
	1	and a	a marter a	a street in	A	1	L states a	a state of	Contract of		and a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

02 | Overview: Al in R&D

Leveraging AI in R&D: Achieving Competitive Advantage

• Future prospects and trends in AI-driven R&D

- Importance of creating a sustainable foundation for "future-proofing" AI prior to prematurely trying to leverage or implement AI-driven technology into R&D efforts
- How the future of R&D will look with AI vs. how it looks today

• Ways AI can enhance R&D performance and competitiveness

- Short-term
- Long-term

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI

04 | Understanding The Resources & Constraints for AI
05 | Best Practices: Start Creating The Proper Infrastructure
06 | The Benefits of an All-in-One Data Infrastructure
07 | Q&A

Data Systems: Structured vs. Unstructured

Unstructured

Examples

- Spreadsheets
- Word Documents
- PDFs
- Lab Journals/ELNs
- SharePoint/Shared Drive

Advantages

- Free
- Unrestricted entry of information
- Known/second nature "habitual"

Disadvantages

- Limited scope & scalability for application of info
- Ctrl+F keyword searching
- Limited collaboration
- Inability to innovate efficiently & at market-rate

Structured

Examples

- Databases
- LIMS
- Inventory Systems
- Uncountable

Advantages

- Instant access to specific information/data
- Shareable & scalable information
- Intelligent insights & reporting

Disadvantages

- Requires intentional/deliberate entry of information
- Change management
- Migration of historical data into new system
- Disciplined use

Top 3 Problems Deploying AI Without Structured Data

• Why Excel & Unstructured Data System Are Insufficient

- 1. Volume of Data
 - A small data set with the best AI model in the world is worse than both expert scientists and simpler AI models applied to "big data"
 - The most important aspect of any AI model is its underlying data both size and cleanliness
- 2. Relevancy to Problems
 - Will create desire to squeeze square peg in round hole When we do have some data, we must apply AI, even if it's not a fit
 - Al is not a fit for all use cases!
- 3. Scientist Trust
 - Desire to be an AI first company without gathering appropriate data results in scientist trust being lost
 - Al ends up being applied to projects that aren't good fits, or only to high priority projects that carry substantial failure risk when there are issues, team loses faith in the process
 - Sufficient Data is important, but not the only prerequisite

Common Data Systems: LIMS, ELN, and ERPs

• Laboratory Information Management System "LIMS"

- Sample management / metadata
- o Output Capture
- Task management

• Electronic Laboratory Notebooks "ELNs"

- Experimental capture in real time / Collaborative
- Needs "spreadsheet" support (formulation/analysis)
- o Unstructured

• Enterprise Resource Planning "ERP"s

- Inventory systems
- Equipment management
- o BOMs
- Information store / system of record

Importance of Structuring Lab Data for AI

• Why Structured Data is Important for AI

- Standardization/Consistency
- Reliability
- Feature Engineering
- Scalability
- Data Integrity
- Interoperability
- Ground Truth & Labeling
- Reduction in Noise
- O Easier Analysis & Debugging
- o Data Governance

Importance of Structuring Lab Data for AI: Example of Brookfield Viscosity

- Standard Way Data Gets Recorded In Spreadsheets and Notebooks:
 - O Viscosity, 7D = 3000
 - O Brookfield Visc. Sp #4 = 5500
 - o BV, ON = 1800

• Best Practices for Structuring Lab Data for AI:

- Brookfield Viscosity = 5000
 - Liquid Aging Time + Temperature: 7D at 23°C
 - Spindle #4
 - RPM: 150
 - Test Temperature: °23
 - Exact temperature and time
 - Machine SN, Operator

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI

04 | Understanding The Resources & Constraints for AI

05 | Best Practices: Start Creating The Proper Infrastructure
06 | The Benefits of an All-in-One Data Infrastructure
07 | Q&A

Types of Data Systems: R&D Organizations

ELN/Lab Journals

Inventory

Visualizations / Analysis

Statistical Tools

Predictive tools

Other Internal Databases

\sim	\supset
	·
	•
	-,]

04 | Understanding The Resources & Constraints for AI

Considerations: Setting The Right Expectations

• Too big of a search space

- 100s of ingredients, but limited data points
 - Either from collection, cleanliness, or standardization

• Moonshot objectives

- What are you trying to achieve in this project vs long term goals
- What are more reasonable targets that would allow you to claim "progress"

• Perception of perfection

- Why would model suggest such a thing?
- Why isn't model more accurate?
- Can it model pictures of exposure ratings?

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI

04 | Understanding The Resources & Constraints for AI

05 | Best Practices: Start Creating The Proper Infrastructure

06 | The Benefits of an All-in-One Data Infrastructure

07 | Q&A

Defining & Creating an AI Roadmap

1. Before (Preparation)

- Ensure structured data system in place
- Verify all scientist work is being captured in a way fit for AI
 - All data points and all aspects of data
 - Example: Viscosity centipoise, temperature, spindle, rpm...
- Utilize in-house expertise to understand/validate vendor and partner "claims"

2. During (Deployment)

- Identify appropriate targets for AI Example Criteria:
 - Large Amounts of Data
 - Known Success Criteria
 - Consistent Output Results
- Ensure AI is embedded into daily workflows
 - Not judged off success in a project where majority of results are out of scientists control

3. After (Maintenance)

- Identify areas where data capture is insufficient
- Deploy systems and/or recurring procedures to collect data

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI

04 | Understanding The Resources & Roadmap for AI

05 | Best Practices: Start Creating The Proper Infrastructure

06 | The Benefits of an All-in-One Data Infrastructure 07 | Q&A

All-In-One Structured Data Platform

We Created The Our Platform To Centralize, Connect, And Structure All Types Of R&D Data.

Example 1 Platform-Wide Data

Example 1: Output Fits

Training Accuracy

Example 1: Linear Coefficients

and the second second

Type	Name	10,000	Output	1 Outp	ut 2 Output 3	Output 4	Output 5	Output 6	Output 7	Output 8	Output 9	Output 10	Output 11	Output 12
										-0.759			-08	0.000104
upressent 1										0.231			4.1274	0.00002H
unadient I				10.0						0.0401			9.335	0.000214
greater a				可作	34	L /	AT .			-1.05		431	481	-1.001109
forment 4				4.76		1071		-6.223	0.000	0.229	-0.010	耕	-6.781	-0.000187
prodient 5				400						1.14		413-	0,190	-0.000177
preifient 5				148						1.0481			0.18	0.00013
Decrement /						10				-0.440	11+07	-8.6	0.135	0.000108
gresberit B				-217		n. 4		10.0	2.41	1.20	214	1000		0.0000000
pedent 9													1.001	/0.0000945
predient 10				4.01	33		ùr.		5.94	-642	5.63		10.7	0.0000075
preifent 11			-26.5	60216								4792	8.0724	0.0000871
gredient 12				10.70						-0.02811		-04	120	-0-0000477
prodient 13				12						-000947		48	KSRF.	0.0000437
predient 14				1.00	10	101 1	794	(LAIP	0.00	0.0011	100	414	429	4.0000
predient 15				1.00					0.019	1 110		1.00	0.054	D.ODBAAAA
prestient 16														
presient 17		正正下正有(~		1100		7	1000				N THE P	100	0.798	D. D. Brancher
predient 18										1.00.0			8.171	0.0000386
greellent 19		-		-08.1	10	10A	(#)	1.00	0.096	1.48	-1.54	845	2.10	0.0000344
predient 20			-27.3	9.004						0.0314		-0.911	8.2221	0.0001309
gradient 21				210						-0.378		40	40774	4.4060917
gredient 22										0.001	0.183	0.13	9.315	-0-0000294
gredient 23				1.00								410	128	0.00002#98
precient 24				0.98								-117	-0.0021	-0.0000258
redient 25				= PV						-booyers		-121	9,262	b.compen-
and and 16				4.916	,00	203 - 4	047.1	10.716	10.14	0.0819	4.847	-0.073	-6.14	-0.0000236
provident 17				1.00						2.0.0		-4.1	8.236	0.0000232

(U) uncountable.

Example 2 Targeted Experiments

Example 2: Suggested Experiments

Suggested Formulations

Recipe Name		Recipe 1	Recipe 2	Recipe 3	Recipe 4	Recipe 5	Recipe 6
Import Recipe?		men desent	50 304 878 - 2011	1.05040.00	19922401022	CHANGE CERE	a sina antara dar
ngredient 1	= 3.5 x	26	2.5	2.0	181	15	24
ngredient 2	= 0.202 e*	0.2025	0.2021	0.0001	1.000	11.2021	0.2025
ngredient 3	-0.0121 /	0.01208	0.01206	8.01200	0.01209	0.01200	8.01000
rgredient 4	[6.52, 10.2]		9.709	10.11	8.072	8.411	85
igredient 5	[10.3.25]	60.00	39.74	1000		10.07	10.00
igredient 6	10000	*****	20.71	11.41		10.44	. 11.117
igredient 7	ferver and the	9.650	8.146		6.347	6,307	
gredient 8	(5.84, 10.1)	6.138	6.347	6.328	6.236	5.995	5.877
gredient 9	(6.2, 60) <i>p</i> ²	27.86	29.03	32.40	30.69	+6.62	19.01
gredient 10	(5.1, 14.3) Z	10.26	11.35	9.108	10.64	11.42	15.41
gredient 11	114.8.321	20.47		22	17.4		
		100	100	100	100	500	100
alculation 1	(2. 4)	2,25	3.03	2.09	2.39	2.98	2.78
alculation 2	(D.B. 1.2)	0.804	9.55	1.03	1.de	1.13	1.08
alculation 3		3.18	3.87	2.89	3.21	3.01	2.81
alculation 4		191	9.82	0.595	2.54	6.36	15.41
	Goal				-		
redicted Output 1	# 3930	TU1 ± 111	236 2 111	224 ± 100	296 ± 100*	210 4 100	215 * 108
redicted Output 2	21	7.6+2.75	5.82 ± 3.11	7.71 ± 2.80	7.38+2.84	571+3.00	594±211
redicted Output 3	= 4000 # 2	2102±1300 28±107	1860 ± 1030 2.68 ± 1.15	2140 ± 1500	2050 ± 1460 2.5E± 1.07	1810 ± 1760 2.46 ± 1.1	1000 ± 1640

02 | Overview: Al in R&D

03 | Considerations Before Implementing Al

04 | Understanding The Resources & Roadmap for Al

05 | Best Practices: Start Creating The Proper Infrastructure

06 | The Benefits of an All-in-One Data Infrastructure

07 | Q&A

Just a few of many Uncountable Long-Term Customers

Thank You!

Questions?

Email: <u>info@uncountable.com</u> Inquiries: <u>www.uncountable.com/contact-us</u>

www.uncountable.com

Want a Demo?

Scan The QR Code

