

New Thermal Management Raw Materials Platform gives Flexibility to Develop Next Generation Thermal Insulation Coatings (TIC) with Improved Performance Presenter: Dr. Hrishikesh Bhide

Authors:

Evonik Corp (US): Maria Nargiello, Dr. Hrishikesh Bhide Evonik GmbH (Germany): Dr. Niko Haberkorn, Dr. Markus Hallack, Dr. Bjoern Lazar, Laura Kleemann, Vanessa Kimmel

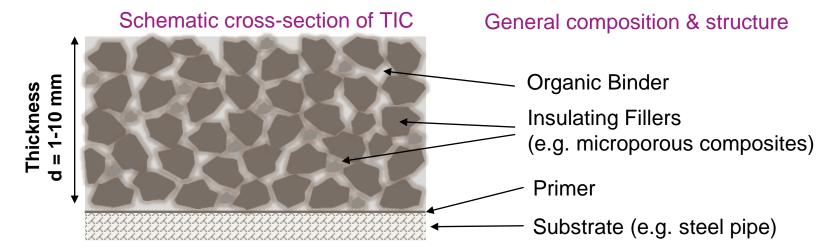
Thermal insulation coatings (TICs) are an alternative for various applications Chemical Industry (e.g. Pipes, Storage Tanks, Valves), Oil & Gas, Marine etc.

Easy to apply

- Large areas & complex shapes can be insulated in a short time via spray process
- Application possible while equipment is still in service
- → Faster implementation times, reduced shutdown times and increased energy efficiency

TIC provides direct protection of substrate and condensation control

- Good adhesion and low moisture uptake of TIC
- Insulation performance of TIC prevents condensation on cold surfaces
- \rightarrow Reduced risk of corrosion under isolation (CUI)


Ideal technology for personnel protection

- TIC reduces temperature of hot surfaces and prevents skin burns if touched
- Thickness of TIC could be designed based on individual case

New Generation of Thermal Insulation Coatings (TICs) What is a TIC?

New Generation of Thermal Insulation Coatings SIG & SIG synergistic filler

- Particle size d₅₀ ~300 µm
- Superinsulation properties from passivated amorphous SiO₂ composite core
- High hydrophobicity
- Non-combustible / non-flammable

- Particle size d₅₀ ~30 µm
- Excellent insulation properties from amorphous SiO₂ core
- Low particle size for smooth coating surfaces
- Excellent dimensional stability

Raw Material TIC Platform (SIG, SIG Synergist, WBSHB)

SIG

carbon content

delivery form

loss on drying

particle size, d₅₀

particle size, d₉₅

pH- value

specific surface area (BET)

tamped density

thermal conductivity at 10°C

< 2.5 % (without opacifier) free-flowing powder < 0.5 % ~ 300 µm < 1000 µm 6.5 - 8.5 ~ 115 m²/g ~ 225 g/l ~ 0.024 W/m/K

SIG Synergist
carbon content
delivery form
loss on drying
particle size, d ₅₀
pH- value
specific surface area (BET)
tamped density
thermal conductivity at 10°C

WBSHB

~ 3.0 %

powder

< 1.0 %

~ 30 µm

7.0 - 9.5

~ 190 m²/g

~ 0.030 W/m/K

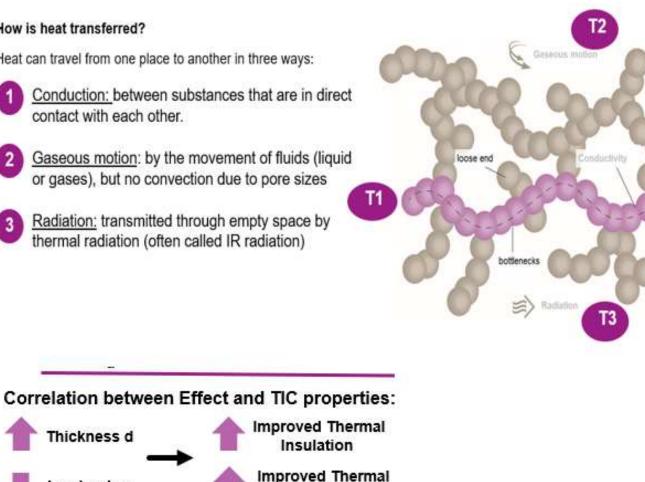
~ 300 g/l

(without opacifier)

free-flowing

appearance	milky liquid
delivery form	dispersion
non-volatile content	46-54%
pH-value	4,5 - 7,0
viscosity at 23°C (as supplied)	50-500 mPas

Basics of Thermal Insulation and snapshot of current TIC filler landscape


How is heat transferred?

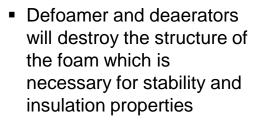
Thickness d

low λ value


Heat can travel from one place to another in three ways:

- Conduction: between substances that are in direct contact with each other.
- Gaseous motion: by the movement of fluids (liquid or gases), but no convection due to pore sizes
- Radiation: transmitted through empty space by 3 thermal radiation (often called IR radiation)

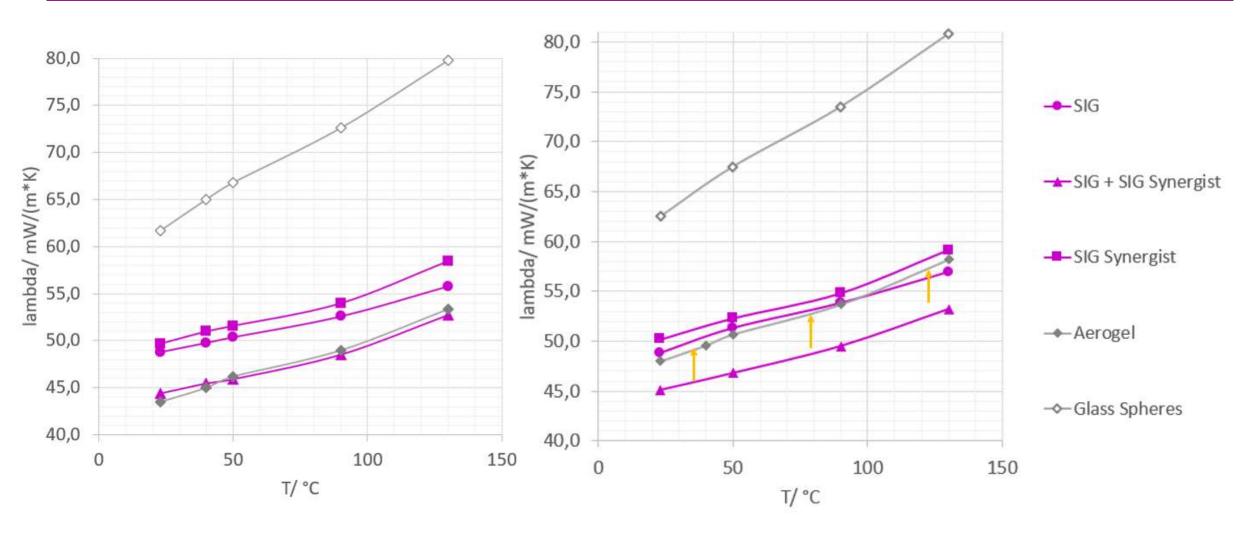
Insulation


λ value of "conventional" insulation systems and Insulation Fillers for TICs

Incorporation of TIC Platform into a coating and Formulating Hints

- Liquid components weighed in and homogenized 5' with a prop stirrer (300 rpm)
- Insulating material is added to the formulation in small quantities while
- Speed of rotation must be increased continuously in small steps up to 1200 rpm.

 Substate wetting and dispersion additives tend to wet out the hydrophobic particles and lead to a strong thickening of the whole formulation.


WB Acrylic Binder Formulations (in w%) w/ Different Thermal Insulation Particles

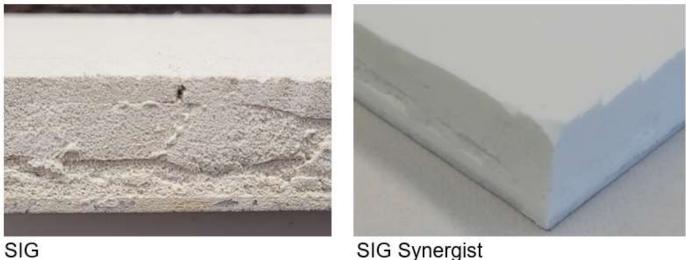
	1	2	3	4	5
WB acrylic binder*	45.58 %	43.11 %	39.72 %	72.73 %	63.88 %
WB silicone emulsion*	0 %	0 %	0 %	0 %	0 %
Water	24.15 %	22.84 %	21.03 %	12.56 %	18.63 %
Viscosity modifier**	0.04 %	0.04 %	0.04 %	0.07 %	0.06 %
Glass fibers	0.61 %	0.58 %	0.53 %	0.97 %	0.85 %
Particle stabilizer (PVOH)	0.98 %	0.93 %	0.85 %	1.55 %	1.37 %
SIG	28.65 %	26.01 %			
SIG syn		6.50 %	37.83 %		
Aerogel				12.12 %	
Glass spheres					15.21 %
Calculated PVC	77.8 v%	79.9 v%	79.5 v%	72.2 v%	78.8 v%

• *Approx. 50 % water content in used binder systems; ** nature-based (xantham gum) rheology modifier (thixotropic liquid)

• Note: Formulations were optimized for lambda performance and not for long term stability

WB Acrylic Binder Formulations (in w%) with Different TIC Particles @ T=0 & T=10 days @ 140C

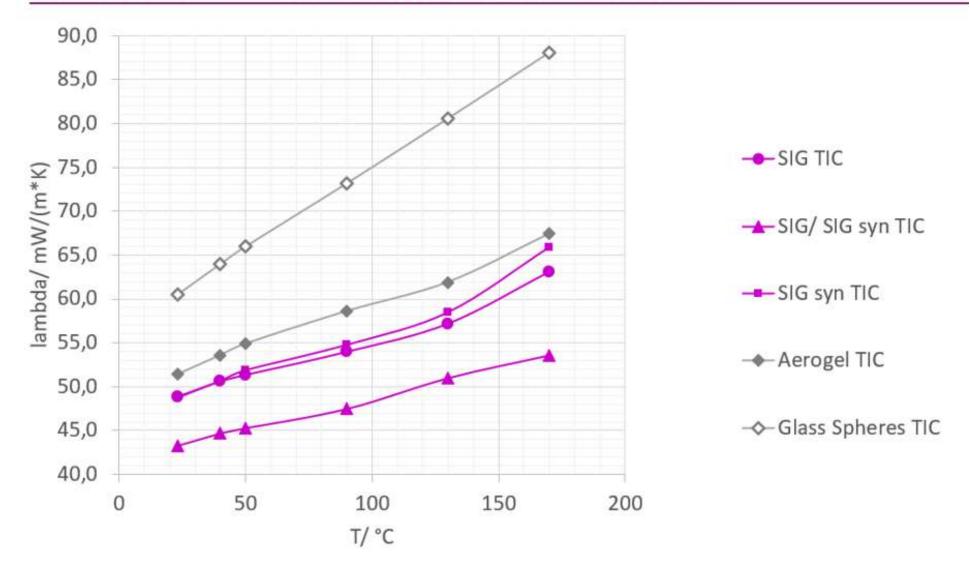
9


Photos of WB Acrylic with TIC fillers after heat aging for 10 d @ 140C

Commercial aerogel

Commercial glass hollow spheres

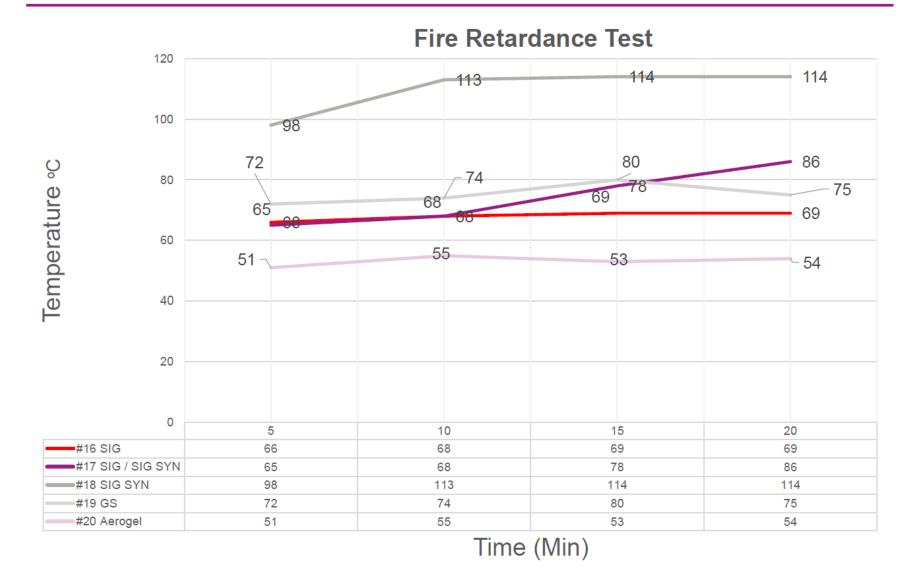
SIG Synergist

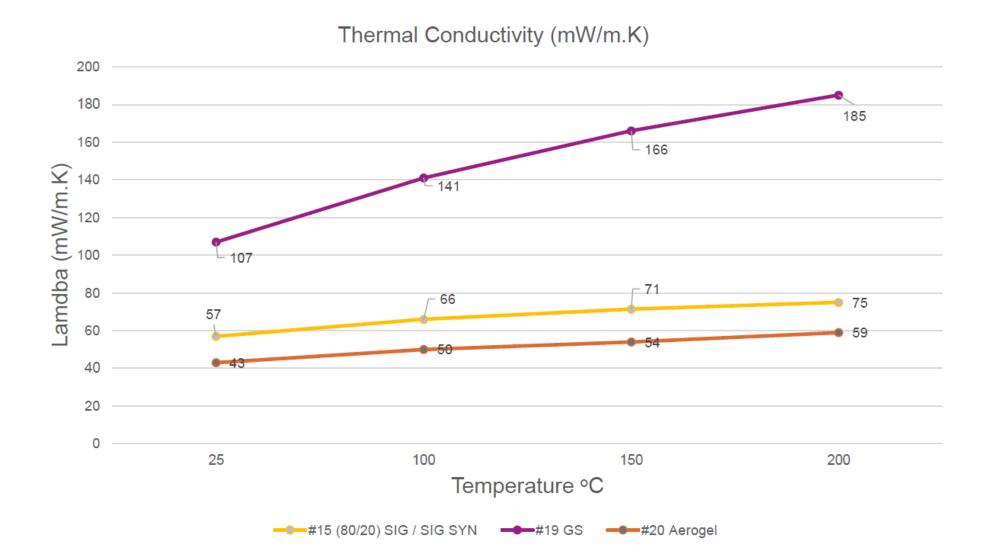

Hybrid Formulations with WB Acrylic & WB Silicone Emulsion (in w%) w/ Different Thermal Insulation Particles

	6	7	8	9	10
WB acrylic binder*	14.04 %	12.34 %	12.03 %	20.45 %	19.08 %
WB silicone emulsion*	29.64 %	26.05 %	25.39 %	43.18 %	40.28 %
Water	26.37 %	20.87 %	20.35 %	23.26 %	21.70 %
Viscosity modifier**	0.04 %	0.04 %	0.04 %	0.06 %	0.06 %
Glass fibers	0.58 %	0.51 %	0.50 %	0.85 %	0.79 %
Particle stabilizer (PVOH)	1.87 %	1.64 %	1.60 %	2.73 %	2.54 %
SIG	27.46 %	30.84 %			
SIG syn		7.71 %	40.09 %		
Aerogel				9.47 %	
Glass spheres					15.55 %
Calculated PVC	76.4 v%	83.0 v%	80.1 v%	68.2 v%	79.1 v%

• *Approx. 50 % water content in used binder systems; ** nature-based rheology modifier (thixotropic liquid)

· Note: Formulations were optimized for lambda performance and not for long term stability


Hybrid WB Acrylic Binder & Silicone Emulsion (in w%) w/ Different Thermal Insulation Particles

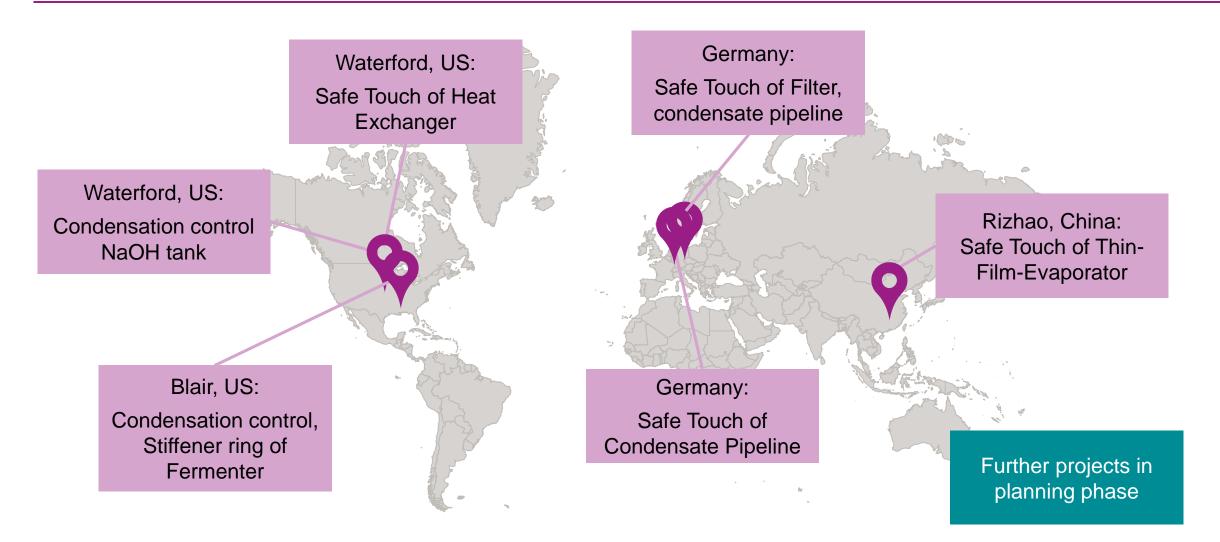

High Temperature WB Silicone Emulsion w/ TIC fillers

Formulation	<u>80/20</u> SIG / SIG SYN	<u>SIG</u>	<u>50/50</u> SIG / SIG SYN	<u>SIG SYN</u>	<u>Glass Sphere</u>	<u>Aerogel</u>
	#15	#16	#17	#18	#19	#20
WB Silicone emulsion	42.36%	45.17%	43.22%	44.34%	54.38%	54.38%
PVA (20% in water)	12.45%	13.30%	12.70%	13.00%	13.52%	13.52%
Visc. modifier 0,5%	0.37%	0.40%	0.38%	0.39%	0.37%	0.37%
Water	18.68%	19.92%	19.05%	19.55%	20.57%	20.57%
Fibers	3.57%	1.86%	1.78%	1.82%	3.57%	3.57%
SIG	18.04%	19.38%	11.43%	0.00%	0%	0%
SIG Synergist	4.53%	0.00%	11.43%	20.86%	0%	0%
Glass Sphere	0.00%	0.00%	0.00%	0.00%	7.6%	0%
Aerogel	0.00%	0.00%	0.00%	0.00%	0%	7.6%
Total%	100%	100%	100%	100%	100%	100%

Fire Retardance Results w/ TIC Fillers

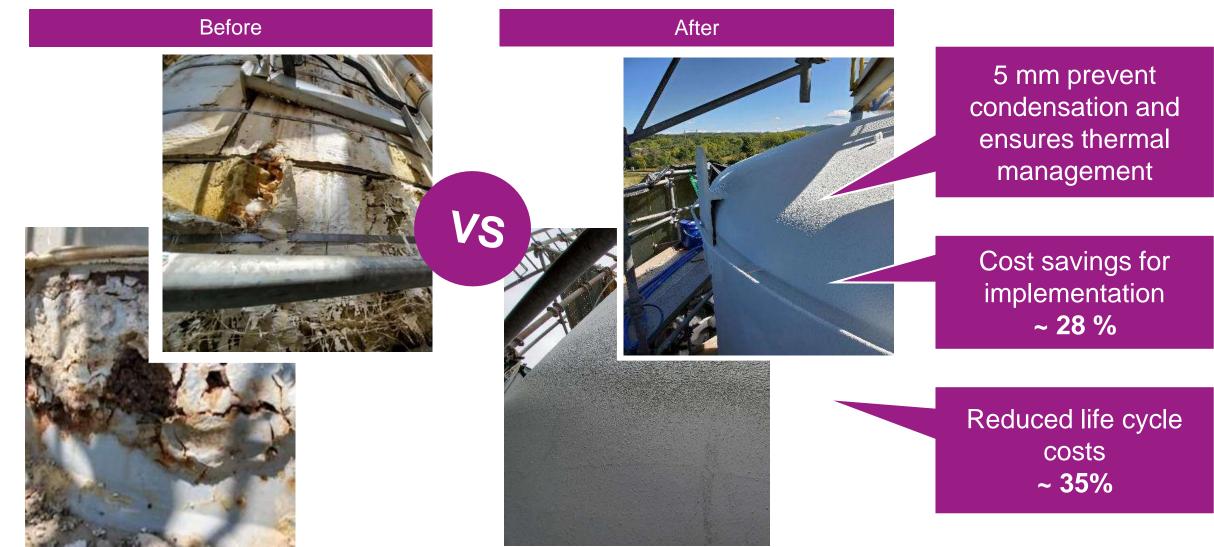
Thermal Conductivity (mW/m*K) of Silicone Formulations w/ TIC Fillers

Photos of Flame testing with TIC Fillers in WB Silicone



Glass Spheres

Aerogel



First commercial TIC successfully tested in various "use cases" within production landscape

Prevention of Corrosion under Insulation (CUI) Caustic soda tank

Conclusions

- TIC made with new SIG demonstrate high performance efficiency due to improved lower thermal conductivity combined with higher hydrophobicity imparting a balanced condensation protection, especially at temperatures above 100°C.
- TIC made with new SIG demonstrates improved durability due to the improved 3D stability showing less shrinkage after exposure to heat stress.
- For safe touch and Thermal break enhancement driving Dew point shift, TIC made with SIG demonstrates improved thermal stability performance over other TIC filler technology.
- To overcome cracking behavior which can occur in very highly filled coatings, the SIG synergistic filler offers reinforcement and reduces cracking tendencies supported by its spherical morphology and higher internal structure.
- WBSHB offer higher heat resistance than standard TIC binder types and can be co-blended with other typical water-based binder technologies to extend the heat resistance of the over coating.
- The new TIC platform of raw materials consisting of two fillers and a binder can be leveraged together or independently to improve an existing formulation whether the desire is to have a lower thermal conductivity, reduced cracking and improved dimensional stability or increase temperature resistance of classic water-based TIC formulations.

