ΑRΚΕΛΛΑ

Energy-Curable **Dielectric Coating** for The Battery Cell

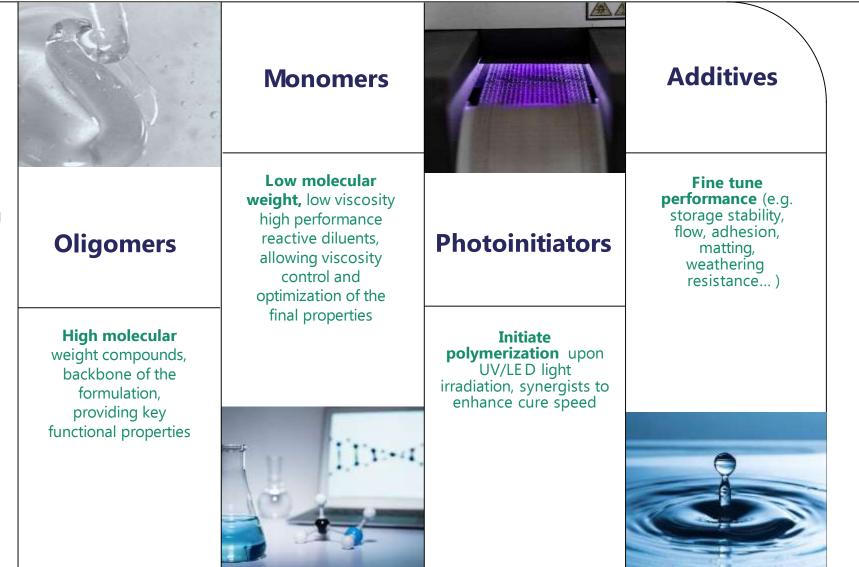
Saeid Biria, Ph.D

09/08/2023

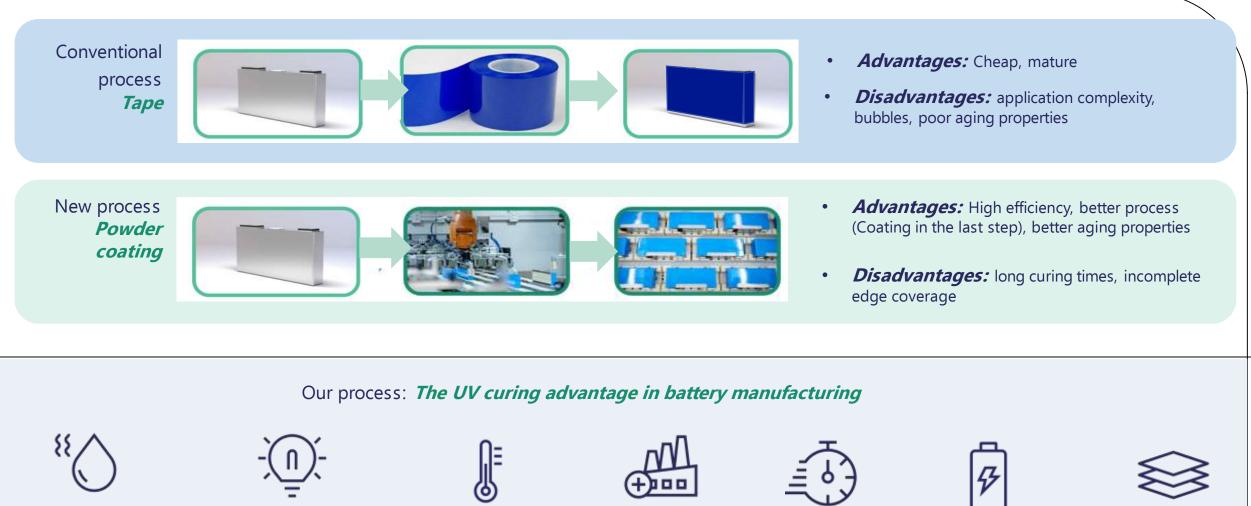
Energy-Curable Dielectric Coatings

 \rightarrow Introduction to Arkema

- \rightarrow UV curing technology for energy savings and performance
- \rightarrow Test methods and essentials for dielectric properties
- → Optimal components for optimal chemical and electrical properties
- \rightarrow A global network dedicated to UV specialties and the battery industry



Sartomer[®] business of ARKEMA: Who We Are


A global leader in Specialty Materials

Arkema, through its **Sartomer Business Unit**, is a **pioneer in designing oligomer and monomer resins for radiation-curable manufacturing**.

SARTOMER®

Processes of Dielectric Battery Coating

Low energy intensity

No VOC

100% solids

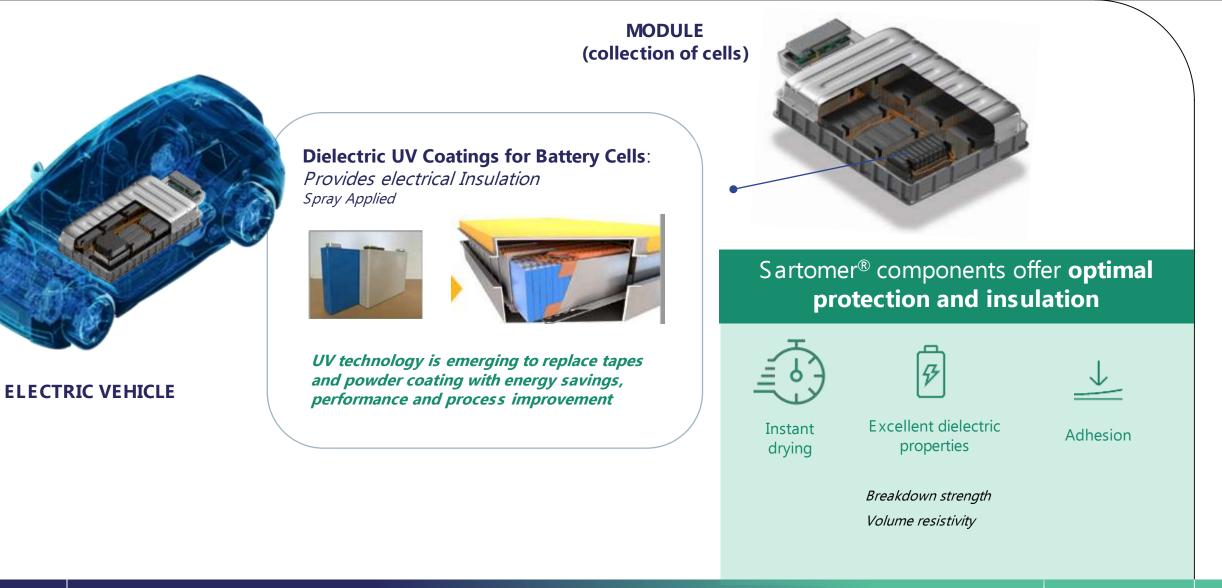
process

Ambiant curing

Easier

process

High speed curing

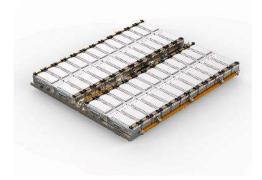

Dielectric resistance

No film delamination

ARKEMA CTT CONFERENCE – September 8, 2023 – PROPERTY OF ARKEMA

Sartomer[®] UV-Curable Dielectric Battery Coatings

For outside the battery cells on electric vehicles



Requirements For Dielectric Coating For Outside Of Battery Cell

\rightarrow Application

- → 100% solid content
- → Hot Spray @ 40°C 50°C
- ➔ Up to 130 µm layer thickness, in 2 coats
- Compatible with existing automated robots

Key Property Requirement	Standard	Typical Target Value
Viscosity at 22°C, cPs	-	5,000-10,000
Pencil Hardness	ISO 15184-1998	>B
Adhesion-Tape Test	ASTMD3359	5
Flexibility	IPC-TM-650 2.4.5.1	Passed > 9mm
Volume Resistivity	ASTM D257	>10 ¹¹ Ω.cm
Dielectric Breakdown, AC	ASTM D149	>8 kV
Dielectric Voltage Withstand, DC	ASTM D149	>6 kV

In-house Capabilities To Measure Dielectric Properties

Surface/Volume Resistivity ASTM D257

The resistance to leakage current through the body of an insulating material

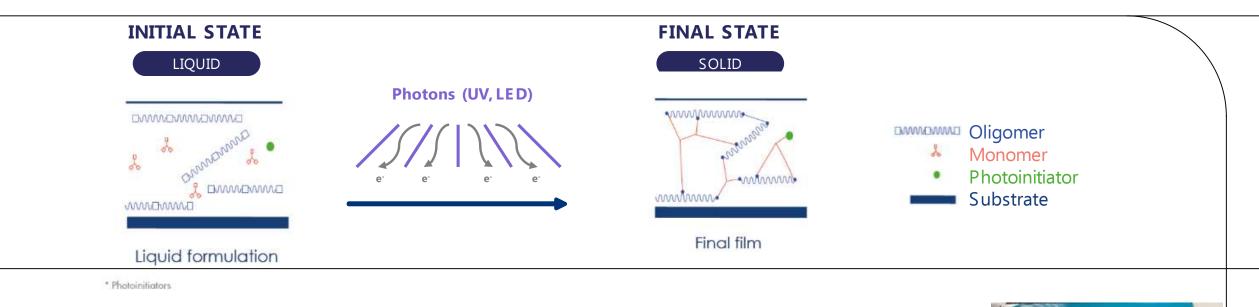
- Material is placed between 2 electrodes in the cell. The Megohmmeter is used to measure the resistance, at specific applied voltage
- ➔ Volume resistivity is calculated from measure resistance

Dielectric Breakdown ASTM D149

The failure of an insulating material under an externally applied field

 Voltage is applied across the two electrodes and raised from zero to dielectric breakdown at a uniform rate

Dielectric Withstand ASTM D149


The ability of an insulating material or device to withstand a high voltage without experiencing a disruptive electrical breakdown

→ High voltage is applied to the insulating materials for a specified duration, and the current flowing through the materials is monitored

UV Curing, Coating, And Aging Procedure

Aluminum substrates are wiped with toluene in addition to acetone wipe

 Coatings are applied with three different thicknesses, including one 30µm layer, one 60µm layer, and 2x60µm layers of the resin on an Aluminum substrate using a drawdown bar

• Coated resin is cured using the **LED line** (395nm) and **fusion lamp** (H bulb)

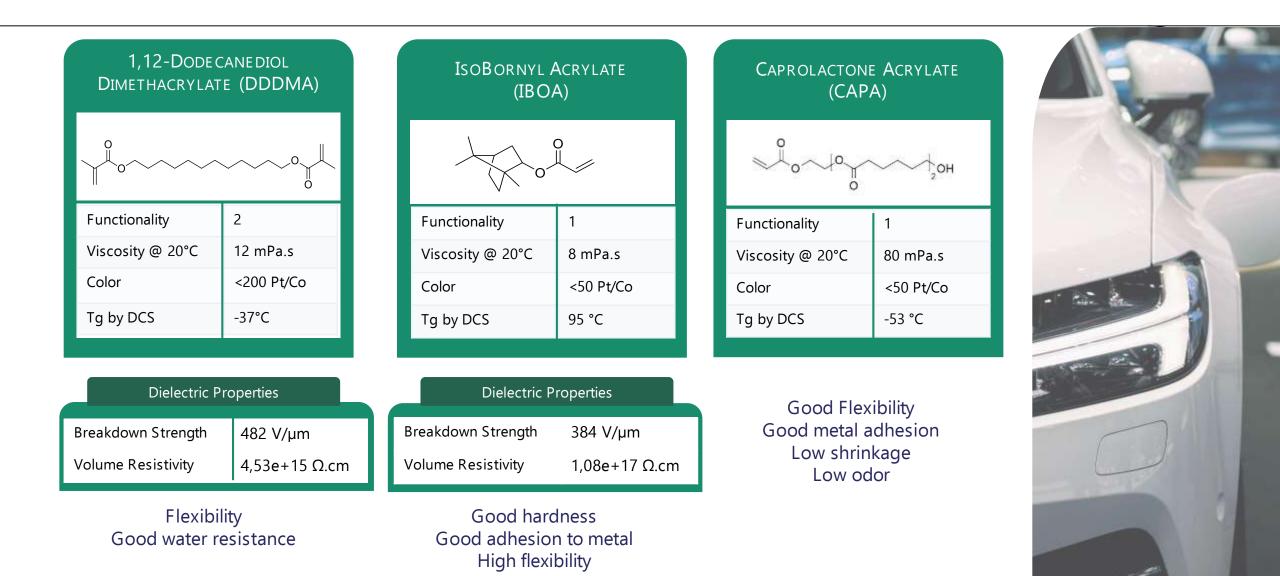
• Coated specimens underwent aging in both an environmental chamber at **85°C/85%RH** and through **electrolyte soaking** for a duration of up to 4 weeks. Testing on these aged samples took place right after the aging tests. The coated specimens that had been immersed in electrolyte solvents were dried using cleanroom wipes and alcohol prior testing

Optimal Oligomers For Mechanical And Dielectric Properties

POLYESTER ACRYLATE			POLYESTER BASED ALIPHATIC URETHANE DIACRYLATE POLYETHER BASED ALIPHATE URETHANE DIACRYLATE			PolyButadiei Urethane Di	
Functionality	2	Functionality	2	Functionality	2	Functionality	2
Viscosity @ 60°C	8800 mPa.s	Viscosity @ 60°C	660 mPa.s	Viscosity @ 60°C	5900 mPa.s	Viscosity @ 60°C	5900 mPa.s
Young Modulus	2 MPa	Young Modulus	134 MPa	Young Modulus	189 MPa	Young Modulus	189 MPa
Elongation at break	90 %	Elongation at break	79 %	Elongation at break	137 %	Elongation at break	137 %
Tensile Strength	1.9 MPa	Tensile Strength	37 MPa	Tensile Strength	21 MPa	Tensile Strength	21 MPa
Tg by DMA	10 °C	Tg by DMA	27 °C	Tg by DMA	8 °C	Tg by DMA	8 °C
Adhesi	_	Multi-purpos oligom	se base	Compatibility w adhesive]] /ith intercells	Elastomeric behavior 8 Good insulation	S & shock resist
		ongoni			System	Breakdown Strength	256 V/μm I,31e+15 Ω.cm

Performance of Optimal Oligomers in a Formulation

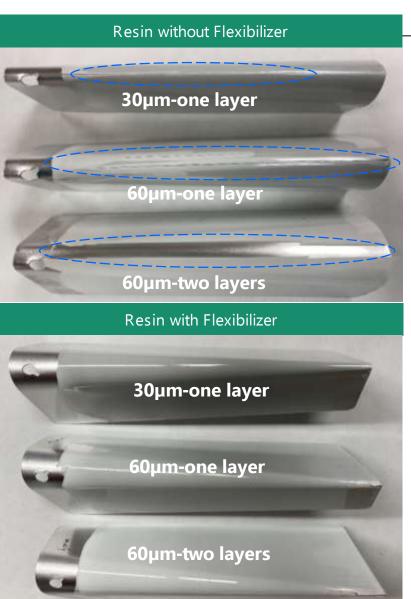
Polyester and Polyether of balance	diol-based aliphatic ι d combination of ad			well-		
Formulation: Optimal Acrylate Oligo	omer + Acrylate Monomer + P Ave Volume Resistivity	hotoinitiator + Fillers/Addi Standard Deviation (Ω*cr		Hardness		
Film coated on Al substrate	(Ω*cm) 500 V-60S					
Resin formulated with polyester-extended alip	hatic UA					
30 µm - one layer	3.55E+13	1.40E+13	1	2H		
60 μm - one layer	2.42E+13	1.05E+13	2	3H		
60 μm - two layers	3.57E+13	3.60E+12	5	4H		
Resin formulated with polyester diol-based ali	ohatic UA					
30 μm - one layer	1.84E+13	5.10E+12	3	4H		
60 μm - one layer	2.05E+13	6.30E+12	5	4H		
60 μm - two layers	2.13E+13	1.70E+13	5	5H		
Resin formulated with polyether diol-based UA	N .					
30 µm - one layer	1.36E+13	1.30E+12	5	3H		
60 μm - one layer	9.43E+13	4.60E+13	5	5H		
60 μm - two layers	8.76E+13	9.40E+12	5	5H		


Aging Tests of Resin with Polyether-Based Oligomer

Polyether-diol based aliphatic UA exhibit strong **adhesion**, **hardness**, and **dielectric** properties subsequent to the 85°C/85%RH aging test

Formulation: Oligomer + Acrylate Monomer + Photoinitiator + Fillers/Additives

60um-one layer film coated on Al substrate	85°C/85RH								
	Initial	Week 1	Week 2	Week 3	Week 4				
Viscosity @ 25°C cPs	2989								
Ave Volume Resistivity (Ω*cm) 500 V-60S	9.43E+13	9.00E+13	7.46E+13	5.80E+13	5.74E+13				
Standard Deviation (Ω^* cm)	4.60E+13	3.90E+13	2.50E+13	1.50E+13	3.70E+12				
BDS V/um	174.44	161.94	160.58	157.23	151.32				
Ave Adhesion (cross hatch)	5	5	5	5	5				
Pencil Hardness	5H	5H	5H	5H	5H				
Flexibility-Mandrel Bend Test 90° Diameter Range 4 - 34mm	Passed> 13mm								


The Right Monomers With Mechanical And Dielectric Properties

Flexibilizer - Performance of Monofunctional Diluents

The addition of a flexibilizer to the resin enhances both **flexibility** and **adhesion** properties

Film coated on Al substrate	Ave Volume Resistivity (Ω*cm) 500 V-60S	Standard Deviation (Ω*cm)	Deviation Adhesion		Flexibility Mandrel Bend Test 90° Diameter Range 4 - 34mm
Resin formulated withou					
30 µm - one layer	1.47E+13	6.4E+12	2	3H	Passed>18mm
60 µm - one layer	2.60E+13	1.6E+13	4	4H	Not passed
60 µm - two layers	2.77E+13	1.7E+13	5	5H	Not passed
Resin formulated with fle	exibilizer				
30 µm - one layer	1.83E+13	7.3E+12	5	3H	Passed
60 µm - one layer	1.86E+13	8.3E+12	5	4H	Passed
60 µm - two layers	2.25E+13	9.3E+12	5	7H	Passed

Toughening Materials To Improve Flexibility And Hardness

MDA	Toughened TCDD	RICYCLODE CANE DIMETHANOL DIACRYLATE (TCDDMDA)	
Clear liquid	Appearance	Clear liquid	Appearance
2	Functionality	2	Functionality
2,275 mPa.s	Viscosity @ 25°C	130 mPa.s	Viscosity @ 25°C
57.80 MPa	Flexural Strength	45.16 MPa	Flexural Strength
4.20 %	Strain at Break	1.48 %	Strain at Break
0.42 J	Energy at Break	0.10 J	Energy at Break
1672.70 Mpa	Flexural Modulus	2876.90 Mpa	Flexural Modulus
80.03 D	Hardness	89.3 D	Hardness
>6 months	Shelf Stability	>6 months	Shelf Stability
	Clear liquid 2 2,275 mPa.s 57.80 MPa 4.20 % 0.42 J 1672.70 Mpa 80.03 D	Functionality2Viscosity @ 25°C2,275 mPa.sFlexural Strength57.80 MPaStrain at Break4.20 %Energy at Break0.42 JFlexural Modulus1672.70 MpaHardness80.03 D	MDA)Clear liquid2130 mPa.s45.16 MPa1.48 %0.10 J2876.90 Mpa89.3 D

	Dielec	operties		
Dk, 1kHz	3.329	V	Dk, 1kHz	3.323
Dk, 10GHz	2.771		Dk, 10GHz	2.760
Df, 1kHz	<0.0065		Df, 1kHz	<0.0089
Df, 10 GHz	<0.01395		Df, 10 GHz	<0.01410
Surface Resistivity	>1.39 ^E +16		Surface Resistivity	>1.53 ^E +16
Volume Resistivity	>1.17 ^E +16		Volume Resistivity	>1.23 ^E +16
				· •

BDS V/um	213.81	176.71
Ave Adhesion (cross hatch)	5	3
Pencil Hardness	4H	НВ
Flexibility Mandrel Bend Test 90° Diameter Range 4 - 34mm	Not passed	Passed >6mm

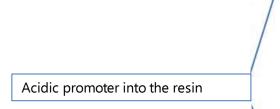
Performance Data ulation: Resin + TCDDMDA/ Toughened Version + Fillers/Additives TOUGHENED VERSION **TCDDMDA** OF TCDDMDA one laver Electrolyte Electrolyte Initial Initial on Al substrate soaking 168 hr soaking 168 hr 1640.01 10510.90 5.19E +1 7.39E+13 5.44E +13 1.83E+1 esistivity (Ω*cm) 3 3 9.30E + 12 1.50E +13 1.30E+1 1.50E+1 ation (Ω^* cm) 3 3

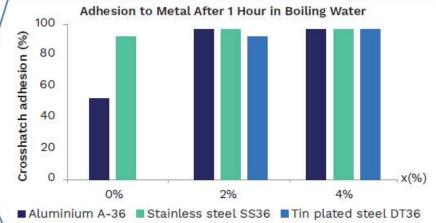
5 3 5H 2H Passed Passed >4mm

184.12

221.12

→ Key features of toughening version of TCDDMDA


- Promotes adhesion
- Good flexibility
- Good Hardness


Optimize Properties With Phosphate Adhesion Promoters

Promoter						
Functionality	1-2					
Viscosity @ 25°C	1600 mPa.s					
Color	1 Gd					
Acid value	280 mgKOH/g					

ACID BASED ADHESION

ACID ESTER BASED ADHESION PROMOTER					
Functionality	1-2				
Viscosity @ 25°C	250 mPa.s				
Color	5 Gd				
Acid value	150 mgKOH/g				

- \rightarrow Key features
 - Good Adhesion
 - Good Chemical Resistance
 - Good Hardness
 - Good Water Resistance
 - High Abrasion Resistance
 - High Flexibility

\rightarrow Cross hatch adhesion test

Formulation without adhesion promotor after 2 weeks @ 85°C/85%RH

Formulation without adhesion promotor after 2 weeks @ 85°C/85%RH

Phosphate vs Non-Phosphate Adhesion Promoters

ormulation: Acrylate Oligomer + Acrylate Monomer + Adhesion Promoter + Photoinitiator + Fillers/Additives							
Film coated on Al substrate	Ave Volume Resistivity (Ω*cm) 500 V-60S	Standard Deviation (Ω^* o	m) Adhesion	Hardness			
Resin formulated with phosphate acid	l based adhesion prom	noter					
30 µm - one layer	2.01E+13	1.5E+13	5	2H			
60 μm - one layer	2.78E+13	8.2E+12	5	5H			
60 μm - two layers	2.59E+13	1.5E+13	5	7H			
Resin formulated with difunctional aci	d ester based adhesio	n promoter					
30 µm - one layer	1.90E+13	5.5E+12	5	Н			
60 μm - one layer	2.08E+13	3.6E+12	5	2H			
60 μm - two layers	2.23E+13	9.9E+12	5	3H			
Resin formulated with non-phosphate adhesion promoter							
30 µm - one layer	1.42E+13	2.3E+12	0	НВ			
60 μm - one layer	1.58E+13	7.0E+12	0	НВ			
60 μm - two layers	1.59E+13	4.2E+12	0	F			

Aging Tests of Resin Formulated without Adhesion Promoters

Coated specimens with no adhesion promoters exhibited a **decline** in both **adhesion** and **hardness**, both prior to and following exposure to 85°C/85%RH and electrolyte soaking

Formulation: Acrylate Oligomer + Acrylate Monomer + Photoinitiator + Fillers/Additives

60µm-one layer film coated on Al substrate	85°C/85RH Electrolyte Soak							king 25°C	
	Initial	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4
Viscosity @ 25°C cPs	1985								
Ave Volume Resistivity (Ω*cm) 500 V-60S	6.84E+13	6.37E+13	5.87E+13	4.99E+13	4.37E+13	5.33E+13	4.07E+13	1.68E+13	1.33E+13
Standard Deviation (Ω^* cm)	1.30E+12	1.10E+13	8.10E+12	3.30E+12	1.30E+13	1.70E+13	1.40E+13	5.70E+12	4.90E+12
BDS V/um	168.12	166.56	157.43	144.32	141.12	101.02	99.45	86.23	83.58
Ave Adhesion (cross hatch)	2	1	0	0	0	0	0	0	0
Pencil Hardness	F	НВ	В	В	В	2B	2B	2B	2B
Flexibility-Mandrel Bend Test 90° Diameter Range 4 - 34mm	Passed> 28mm	Not Passed	Not Passed	Not Passed	Not Passed	Not Passed	Not Passed	Not Passed	Not Passed

Aging Tests of Resin Formulated with Adhesion Promoters

Adhesion promoters enhance **adhesion** and **hardness** both before and after exposure to 85°C/85%RH and electrolyte soaking

Formulation: Acrylate Oligomer + Acrylate Monomer + Adhesion Promotor + Photoinitiator + Fillers/Additives

60µm-one layer film coated on Al substrate		85°C/85RH				Electrolyte Soaking 25°C				
	Initial	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	
Viscosity @ 25°C cPs	2567									
Ave Volume Resistivity (Ω*cm) 500 V-60S	8.08E+13	7.68E+13	7.61E+13	7.49E+13	7.58E+13	3.23E+13	2.62E+13	2.38E+13	1.96E+13	
Standard Deviation (Ω^* cm)	1.3E+13	1.3E+13	6.5E+13	6.7E+12	1.00E+13	4.6E+12	1.00E+13	8.70E+12	5.40E+12	
BDS V/um	176.64	171.44	169.34	165.33	164.22	105.28	104.78	100.02	99.03	
Ave Adhesion (cross hatch)	5	5	5	5	5	3	3	3	3	
Pencil Hardness	8H	6H	6H	6H	3H	5H	5H	5H	5H	
Flexibility-Mandrel Bend Test 90° Diameter Range 4 - 34mm	Passed> 20mm	Passed> 20mm	Passed> 22mm	Passed> 22mm	Passed> 22mm	Passed> 5mm	Passed> 5mm	Passed> 5mm	Passed> 5mm	

Global Footprint Dedicated To UV Specialties And Battery Market

Thank you!

Saeid BIRIA

Lead Application Engineer – Sartomer® Resins saeid.biria@arkema.com +1 (484)-467-7543

SCAN ME TO DOWNLOAD THE PRESENTATION AND ACCESS MORE LITERATURE

ARKEMA

 $\ensuremath{\mathbb{C}}$ Copyright 2023 Arkema –All rights reserved. Do not copy without express permission from Arkema.

Please consult Arkema's disclaimer regarding the use of Arkema's products on https://www.arkema.com/global/en/products/product-safety/disclaimer/