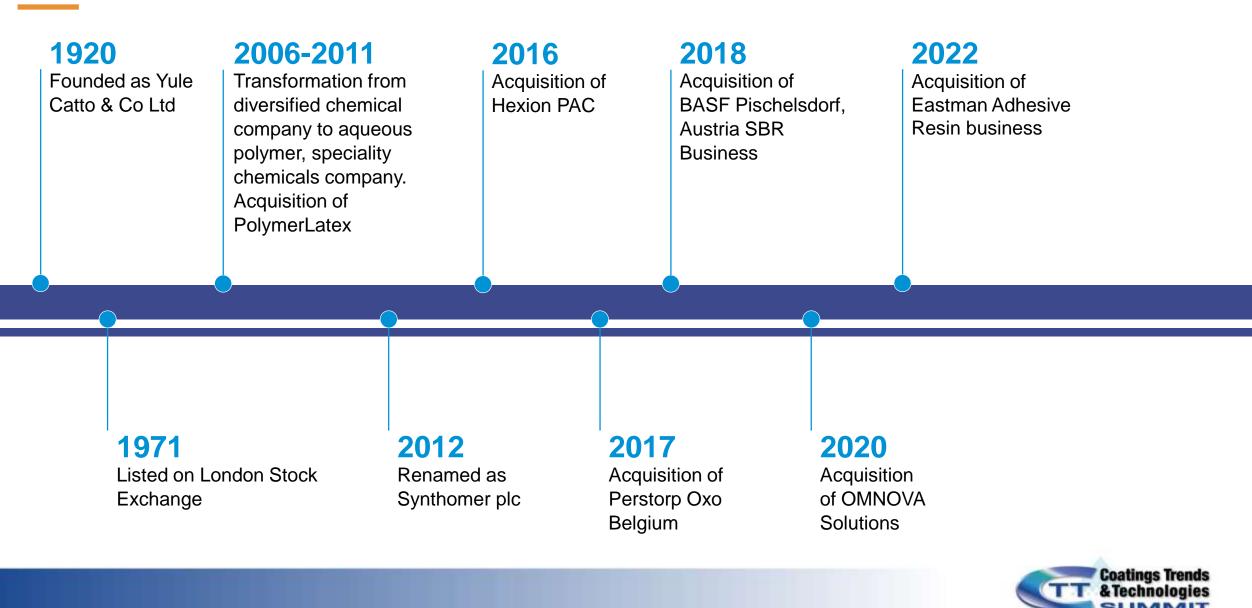


Metal Coatings for the Future Terri John, Technical Service Manager – Americas Synthomer plc.



Metal Coatings for the Future Agenda


- 1. Synthomer Introduction
- 2. What are Metal Coatings?
- 3. Changes Needed to Succeed
- 4. Latex A
- 5. Latex B
- 6. Latex C

Introducing Synthomer An Innovative Specialty Chemicals Company

Introducing Synthomer Divisional Structure

Coatings Trends & Technologies

synthomer

Metal Coatings for the Future Metal Coatings

What are Metal Coatings?

• **Diverse application use**: Infrastructure, industrial manufacturing, transportation, equipment, and consumer goods. *e.g., bridges, cars, trucks, ships, heavy-duty appliances, pipes, furniture, toys*

Types

- Anti-corrosion coatings: a protective coating used to prevent corrosion and increase service life
- *Topcoats for metal*: used to maintain aesthetics and promote value of expensive goods
- *Direct-to-Metal coatings*: dual-purpose: anticorrosive properties and top-coat in one layer

Changes are needed to succeed in the future

As VOC limits continue to decrease, the use of coalescing solvents must also decrease.

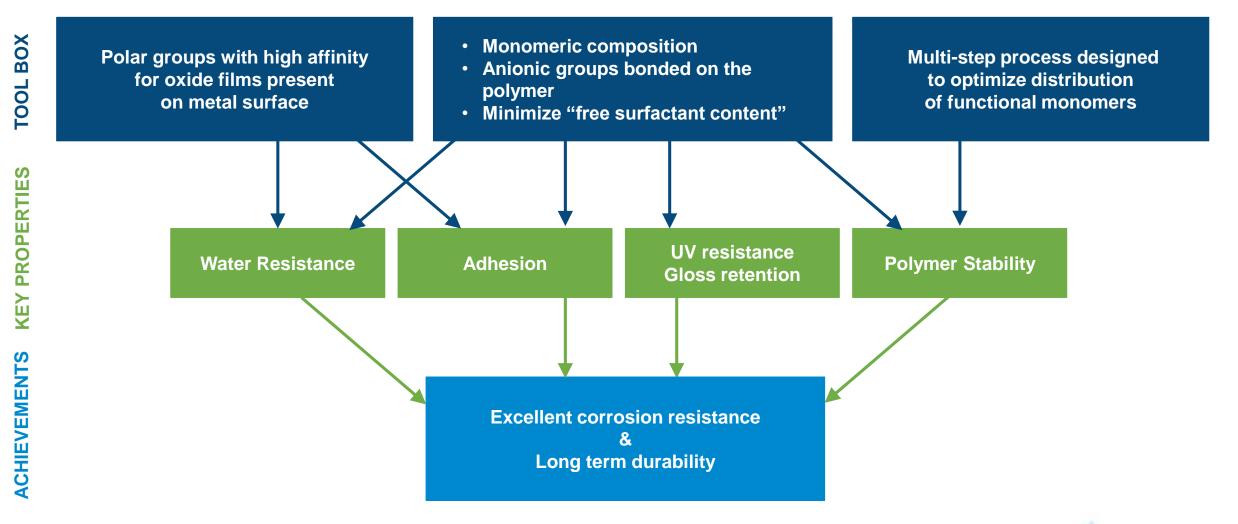
- Coalescing solvents contribute Volatile Organic Compounds.
- Film formation at VOC's less than 100 g/l becomes more difficult for high Tg polymers as they need higher amount of coalescing solvent.
- Zero VOC coalescing aids can soften the film.
- Low Tg polymers are easier to coalesce but may not give adequate resistance properties.

Metal Coatings for the Future Hydrophobic Dispersion Technology

Latex A Hydrophobic Dispersion Technology

- 1. Polymer Design
- 2. Benchmarking
- 3. Performance Results

Synthomer Latexes – Type A Hydrophobic Dispersion Technology



1. Polymer Design

Synthomer Latexes – Type A Hydrophobic Dispersion Technology

Synthomer Latexes – Type A Characteristics & Typical Properties

Typical Properties

- → Modified acrylic dispersion
- → Solid content 50 %
- → pH 8.0
- APEO free
- → No added formaldehyde (amount <10ppm)</p>

	→ To suit different appl	lications and DTM	l requirements, a range o	of Tg's are available
Range of Tg's	Latex A20)	Latex A5	2
. 9 0	Tg (Midpoint) 28° C	MFFT 20° C	Tg (Midpoint) 52° C	MFFT 52° C

Very Low VOC → A paint sample "WB DTM 01" based on Latex A20 was submitted to an independent laboratory in order to carry out emission testing according to the ISO 16 000 Standard

After 28 days of testing, the emission level corresponds to the best class (A+) of the French regulation relating to Indoor Air Quality

High Gloss Direct-to-Metal Paints – Type A Hydrophobic Dispersion Technology

2. Benchmarking

High Gloss Direct-to-Metal Paints – Type A

Starting formulation based on Synthomer latexes (brush/roller applications)

Raw materials	WB DTM 01 %	WB DTM 03 %
Water	14.40	11.10
Associative thickener	0.50	0.50
Amine	0.20	0.20
Dispersing agent	0.40	0.40
Wetting agent	0.40	0.40
Anti-foam agent	0.20	0.20
Titanium dioxide	15.00	15.00
Latex A20	64.50	/
Latex A52	/	64.50
Open time improver	1.00	1.00
Coalescing agent 1	0.80	1.50
Coalescing agent 2	1.20	3.50
Plasticizer	0.50	0.70
Associative Thickener	0.20	0.30
Anti-flash rust additive	0.70	0.70
Plasticizer Associative Thickener	0.50 0.20	0.70 0.30

WB DTM 01 (Based on A20 Latex) **Paint characteristics**

PVC (%)	9.7
Volume solids (%)	42.1
Weight solids (%)	48.8
Specific gravity	1.13
VOC (US calculation)	88 g/L
Gloss 60°	84.0

WB DTM 03, (Based on A52 Latex) **Paint characteristics**

synthomer

PVC (%)	9.7
Volume solids (%)	42.7
Weight solids (%)	49.1
Specific gravity	1.13
VOC (US calculation)	169 g/L
Gloss 60°	84.9

High Gloss Direct-to-Metal Paints – Type A Benchmarking Study – Paint Features

Paint Reference	Market	Destination	VOC	Binder
# 1	DIY	Interior/exterior	<110 g/l	Alkyd emulsion
# 2	Trade / DIY	Interior/exterior	<140 g/l	Modified acrylic
# 3	Trade / Light Industrial	Interior/exterior	191 g/l (US calc.)	Acrylic
# 4	DIY	Interior/exterior	<140 g/l	Alkyd emulsion
# 5	Trade / Light Industrial	Interior/exterior	<140 g/l	Not disclosed
# 6	DIY	Interior/exterior	7 g/l	Alkyd emulsion
#7	Trade	Interior/exterior	<200 g/l (US calc.)	Styrene-acrylate
# 8	Trade / DIY	Interior/exterior	<140 g/L	Styrene-acrylate
# 9	Trade	Interior/exterior	<140 g/l	Not disclosed
# 10	Trade / Light industrial	Interior/exterior	<140 g/L	Acrylic

- → Products sold for light industrial market are recommended mainly for application on metal substrates
- → For products sold for Trade (Contractor) or DIY market, multi-surface adhesion is often claimed

High Gloss Direct-to-Metal Paints – Type A Benchmarking Study – Paint Features

Paint reference	ICI viscosity Cone-Plate (Pa.s)	Brookfield viscosity 50 rpm (mPa.s)	рН	Gloss at 20°	Gloss at 60°
# 1	0.29	2 268	8.5	66	86
# 2	0.15	7 420	8.1	42	74
# 3	0.14	1 832	9.0	59	85
# 4	0.39	7 720	7.4	27	65
# 5	0.29	1 964	8.5	42	75
# 6	0.25	3 192	7.9	45	79
# 7	0.17	2 488	9.4	85	96
# 8	0.20	1 640	8.9	37	76
# 9	0.21	1 690	8.6	54	79
# 10	0.09	1972	8.4	40	82
WB DTM 01 (A20) WB DTM 03 (A52)	0.11 0.12	3 100 2 552	8.5 8.7	60 67	84 85

→ Newtonian rheology profile for most of the products

High Gloss Direct-to-Metal Paints – Type A Hydrophobic Dispersion Technology

3. Performance Results

- 1. Impact Resistance
- 2. Flexibility
- 3. Adhesion

- 4. QUV Resistance
- 5. Salt Spray Resistance

High Gloss Direct-to-Metal Paints – Type A Overall Results

Paint	-	t ance (kg.cm) D2794	Mandrel Bend Test				Gloss Retention at 60°	Color Retention	
Reference	Direct	Indirect	ASTM D522	Cold Rolled Steel	Aluminum	Galvanized Steel	(% remaining after 6w QUV)	(Delta E / 6w QUV)	
# 1	100	100	1/4"	3B	2B	0B	20%	1.01	
# 2	100	100	1/4"	4B	1B	2B	68%	0.62	
# 3	100	100	1/4"	3B	4B	0B	59%	0.25	
# 4	25	10	1/4"	5B	5B	4B	10%	1.10	
# 5	100	100	1/4"	5B	5B	4B	11%	0.87	
# 6	50	50	1/4"	5B	5B	3B	15%	0.84	
# 7	100	100	1/4"	2B	0B	0B	66%	0.44	
# 8	100	100	1/4"	4B	4B	0B	95%	0.80	
# 9	80	80	1/4"	5B	4B	3B	75%	0.60	
# 10	100	100	1/4"	5B	5B	4B	67%	0.39	
WB DTM 01 (A20) WB DTM 03 (A52)	100 100	100 100	1/4" 1/4"	5B 5B	5B 5B	4B 4B	93% 86%	0.48 0.51	

→ Paints #4 and #6 show failure in the impact resistance test

> Paint #7 (highest initial gloss) has poor adhesion properties. Adhesion to galvanized steel is difficult to achieve.

→ Gloss retention of products based on alkyd emulsion is low (Paints #1, #4, #6)

High Gloss Direct-to-Metal Paints – Type A Salt Spray

Test method

- \rightarrow According to ASTM B-117
- → Paints applied on cold rolled steel and galvanized steel at 2.5 mils DFT
- \rightarrow 7 days of drying
- \rightarrow 500 hours of exposure
- → Degree of rusting evaluated according to ASTM D610
- → Degree of blistering evaluated according to ASTM D714
- \rightarrow Following color code is used in this presentation

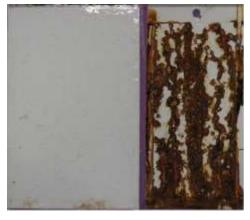
Pusting	Rating according to D610-95	0% to 0.3%	0.3% to 3%	3% to 16%	16% to 50%
Rusting	Color Code	•	•	•	•
Rati	Rating according to ASTM D 714	Few	Medium	Medium Dense	Dense
	Color Code	•	•	•	•

High Gloss Direct-to-Metal Paints – Type A Salt Spray – Results (Blistering and Rusting)

Cold Rolled Steel **Galvanized steel** Paint reference Blisters Rust Blisters #1 N°0 Dense Medium N°6 Dense #2 N°2 Dense N°4 Dense Dense #3 N°6 Dense N°8 Dense Dense N°4/6 Dense N°6 Dense #4 Dense N°8 Medium #5 N°4/6 Dense Dense #6 N°8 Medium Few N°8 Medium #7 N°8 Medium Medium N°6 Medium #8 N°8 Few Few N°8 Few #9 N°8 Medium Medium N°8 Medium #10 N°8 Few Very Few N°6 Medium WB DTM 01 (A20) N°8 Few Very Few N°8 Few WB DTM 03 (A52) N°8 Few N°8 Few Very Few

→ Blister size is rated N°0-N°10, N°10 means no blisters. N°0 represents very large blisters.

High Gloss Direct-to-Metal Paints – Type A Salt Spray Results (Panels after 500 Hours)



Paint #1

Paint #2

Paint #3

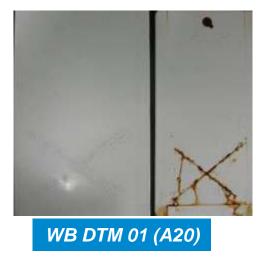
Paint #4

Paint #5

Paint #6

High Gloss Direct-to-Metal Paints – Type A Salt Spray Results (Panels after 500 Hours)

Paint #7


Paint #8

Paint #9

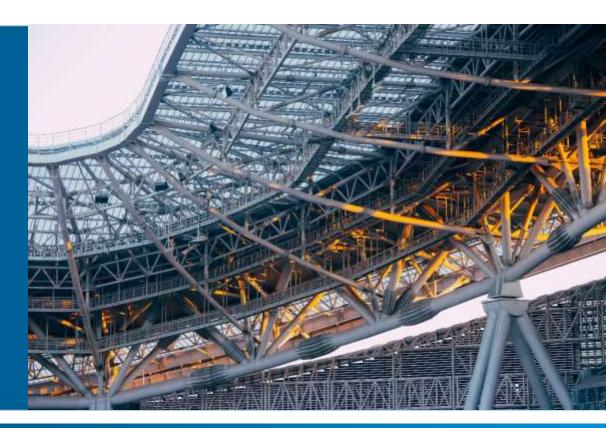
Lower VOC Coatings Keeping up with the Times

Balancing Act

- → Do not affect corrosion resistance
- → Maintain early water resistance
- → Cannot be tacky
- → Maintain adhesion

Lower VOC Formulations

- → <50 g/L formula available for Latex A20</p>
- → Very good corrosion resistance
- → Very good early water resistance
- → Excellent adhesion to multiple substrates, including galvanized steel


Metal Coatings for the Future Tests of binders on multiple metal substrates

Latex **B**

Tests of binders on multiple metal substrates

Polymer Design
 Performance Results

Synthomer Latexes – Type B Tests of binders on multiple metal substrates

1. Polymer Design

Synthomer Latexes – Type B Tests of binders on multiple metal substrates

Technical
approach

Characteristics &
Typical Properties

- Hydrophobic hard polymer
- Excellent adhesion to multiple metal substrates
- → Polymerized surfactants
- → Excellent early water resistance
- → Very good salt spray resistance
- → Styrene Acrylic
- → Weight <solids 50.0%
- → MFFT 32 °C
- → Tg 38°C
- → pH 8.0

Synthomer Latexes – Type B Crosshatch – Adhesion Results on Multiple Metal Substrates

Dispersions		SA-D1			Latex B SA-D2			SA-D3			SA-D4	
Metal	Dr	.y	Wet	D	ry	Wet	D	Pry	Wet	D	ry	Wet
(Rated 0-5, 0=Best)	А	В		Α	В		А	В		А	В	
Cold rolled steel	4B	4B	5B	5B	5B	5B	5B	5B	3B	5B	5B	3B
Hot-melt galvanized	5B	5B	1B	5B	5B	4B	5B	5B	5B	5B	5B	5B
Electro-galvanized	5B	5B	4B	5B	5B	5B	5B	5B	5B	5B	5B	5B
AL 5754 (AIMg3)	0B	0B	4B	5B	5B	5B	1B	4B	5B	1B	4B	5B
AL 5083 (AIMg4,5Mn)	0B	1B	2B	5B	5B	5B	0B	5B	4B	0B	5B	4B
AL 7020 (AlZn4,5Mg1)	5B	4B	4B	5B	5B	5B	5B	5B	5B	5B	5B	5B
AL 5005 (Eloxal AlMg1)	5B	5B	5B	5B	5B	5B	5B	5B	4B	5B	5B	4B
Α	= Drying 1d RT	B	B = Dr	ying 7d R	T + 1d 50°C	Wet	= 1 h aft	er 500 hr (Condensa	tion		

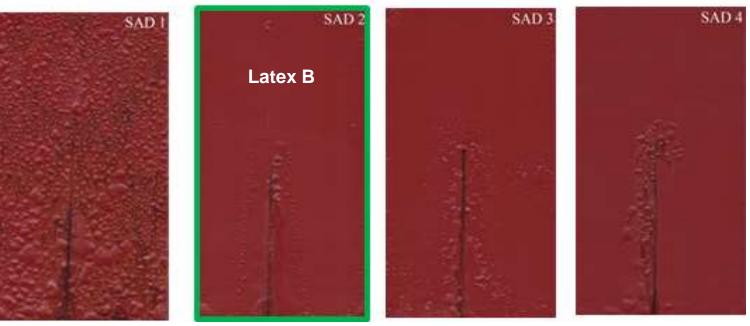
Comment

→ Latex B- excellent dry and wet adhesion on multiple metal substrates

Synthomer Latexes – Type B

Condensation Resistance of Styrene Acrylic Dispersion-Based Coatings

Tested per ISO 6270-1, 500 hours


Comment

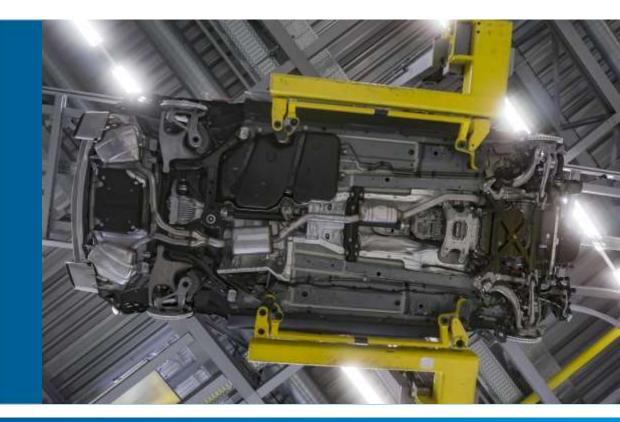
→ Latex B (SA-D2) good water-resistance, no blisters and little blushing

Synthomer Latexes – Type B Salt-Spray Resistance of Styrene Acrylic Dispersion-Based Coatings

Tested per ASTM B-117, 720 hours

Comment

→ Latex B (SA-D2) has good anti-corrosive performance


Metal Coatings for the Future XSBR Latex

Latex C

XSBR Latex for automotive underbody protection and anti-corrosion primers

Polymer Design
 Performance Results

Synthomer Latexes – Type C XSBR Latex

1. Polymer Design

Synthomer Latexes – Type C Polymer design

Technical approach

Characteristics & Typical Properties

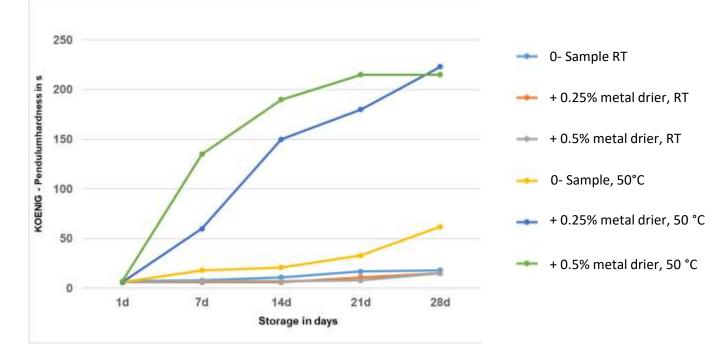
- → Hydrophobic, elastic polymer
- Excellent adhesion on bare metal
- → Excellent stone, chip, and impact resistance
- → Crosslinkable via C=C double-bonds
- → Very good salt spray resistance
- → Carboxylated SB Latex (XSBR)
- → Weight solids 50.0%
- → MFFT 0 °C
- → Tg -5°C
- → pH 8.5

Synthomer Latexes – Type C Polymer design

Designated end-use

- → Underbody-Coatings for automotive OEM
- → Anti-Corrosion primers
- → Flexibilizing component for WB 2K Epoxy Primers
- → Monocoats for automotive OEM-parts in non-visible area

Synthomer Latexes – Type C XSBR Latex



2. Performance Results

Synthomer Latexes – Type C Hardness development with metal driers

- → Latex C contains C=C double-bonds which can be cross-linked via oxidative curing
- Hardness development can be effectively controlled by metal driers including cobalt-free grades
- Comments
- Latex C can be blended with oxidative curing water-based binders, such as wb alkyds and epoxy esters
 Typical ratio (by solids): 70% Latex C / 30% other resin

Metal Coatings for the Future Summary

	Topcoat	Primers	Elastomeric Coatings
	Direct-to-Metal	Anti-corrosion	Underbody Coatings
Latex A20	X	X	
Latex A52	X		
Latex B	X	X	
Latex C		X	X

Questions?

Terri John Technical Service Manager, Coatings

Tel: +1(330)794-6309 Email: <u>terri.john@synthomer.com</u> Address: Synthomer plc. 2990 Gilchrist Road Akron, OH 44305

Thank you for your attention!

