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MATE RIALS  INFORMATICS  FOR COATINGS FORMULATIONS

What is Materials Informatics? 

•Raw Material Replacement Case S tudy

Materials Informatics in Paints and 
Coatings

Summary + Q&A
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WHAT IS MATERIALS 
INFORMATICS?
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• We built the first chemistry & 

materials aware AI platform

• We enable teams across North 

America, EU and Japan to scale 

materials informatics at their 

organizations



Reduce required experiments, improve efficacy, breach performance 

frontiers

MATE RIALS  INFORMATICS  ENABLE S  DATA DRIVEN PRODUCT 
DE VE LOPMENT
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S

Intuition 

Based

Design of 

Experiments

AI Guided 

Experimentation

• Leverages experience • Leverages data, but only what you give 

it

• Often inefficient in high dimensional 

spaces

• Emphasizes understanding feature 

effects

• Leverages data and expertise

• High dimensional capability

• Emphasizes finding the answer



CITR INE  AI-GUIDE D SE QUENT IAL LE ARNING

What is it?

MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S
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Design experiments to co-optimize multiple properties

BUT HOW DOE S  SE QUENT IAL LE ARNING WORK
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S
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Input Properties:
Formulation
Surfactant, Pigment, 

Solvent, Binder, Additives 

Process Parameters
Grinding, Mixing, Application

Output Properties:
Rheology

Solution Stability

Applied Gloss

Traditional DoE rigorously maps 

in 2D 

JCT Coatings Tech · Feb 1, 2015

SL simultaneously optimizes over n-dimensions



Sequential Learning enables efficient exploration over high dimensional 

spaces
Sequential Learning (SL) relies on 

machine learning and subsequent 

uncertainty estimates select the optimal 

experiments to conduct in pursuit of a 

specific set of goals.

SL 0: Pre-sequential learning 

Existing data provides some insight into the system, 

with discrete samples according to historical 

experimental data.

SL 1: Sequential learning round one

High value experiments are selected, performed, and 

laboratory results are ingested back into the system.

SL 2: Sequential learning round two

With new information, a new set of experiments are 

selected, with increasing likelihood of meeting 

performance targets. 

SE QUENT IAL LE ARNING APPLIE D
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S

Input Property 1

In
p
u
t 
P
ro

p
e
rt

y 
2 O

u
tp

u
t P

ro
p
e
rty 1

Input Property 3

In
p
u
t 
P
ro

p
e
rt

y 
4

O
u
tp

u
t P

ro
p
e
rty 2

Input Property 5

In
p
u
t 
P
ro

p
e
rt

y 
6

O
u
tp

u
t P

ro
p
e
rty 3

S
L
0

S
L
1

S
L
2

Input Property 1

In
p
u
t 
P
ro

p
e
rt

y 
2 O

u
tp

u
t P

ro
p
e
rty 1

Input Property 3

In
p
u
t 
P
ro

p
e
rt

y 
4

O
u
tp

u
t P

ro
p
e
rty 2

Input Property 5

In
p
u
t 
P
ro

p
e
rt

y 
6

O
u
tp

u
t P

ro
p
e
rty 3

Input Property 1

In
p
u
t 
P
ro

p
e
rt

y 
2 O

u
tp

u
t P

ro
p
e
rty 1

Input Property 3

In
p
u
t 
P
ro

p
e
rt

y 
4

O
u
tp

u
t P

ro
p
e
rty 2

Input Property 5

In
p
u
t 
P
ro

p
e
rt

y 
6

O
u
tp

u
t P

ro
p
e
rty 3



9

MATERIALS INFORMATICS IN 
PAINTS AND COATINGS

CASE STUDY: RAW MATERIAL 
REPLACEMENT
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SE CRE T

TE CHNICAL CHALLE NGE

Reformulate an existing paint to remove critical 
materials (APEO based surfactant).

DEMANDING DE S IGN TARGE TS

Design a solution stable formulation that is 
semi-gloss on application with novel surfactant. 

TRAINING ON PAST E XPE R IMENTS

Leverage previous experiments to predict valid 
formulations without using APEO containing 
surfactants.

LE VE RAGE  & E NCODE  DOMAIN 
KNOWLE DGE

Capture domain knowledge and leverage it 
through the sequential learning process

DEMO: RE FORMULATE  
PAINT TO REMOVE  APE O 
SURFACTANTS



Domain aware data capture enables material specific modeling and design 

PRE PARING DATA FOR SE QUENT IAL LE ARNING

MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S

NOT BIG DATA DOMAIN AWARE DATA

When few examples are available, it’s critical 

to maximize the value of those data  by 

capturing the context and associated domain 

knowledge.

• Which properties are impactful?

• Under which conditions was a product 

made?
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Large datasets enable machine learning 

without domain knowledge, we frequently 

have limited relevant data in R & D. 

A material history
represents the entire 

history and process 

associated with 

producing a coating 

product. 



Leveraging a coatings aware data model enables analysis and machine learning

PRE PARING DATA FOR SE QUENT IAL LE ARNING
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S

Structure data into tabular format
• Capture material properties that matter

• inputs / outputs / raw material 

properties

• Represent all steps/processes

Coatings Aware Data Model 
• Material relationships captured

• Grind / Letdown mixing steps

• Surfactant/HEUR addition

• Material properties captured

• Molecular structures, particle 

sizes, HLB values



Data modeling enables interoperable data

OVE RVIE W OF THE  DATA
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MAT E R I A L S  I N F O R M AT I C S F O R  C O AT I N G S  F O R M U L AT I O N S

Ingredient 
Roles: 

Microbicide, 

Surfactant, 

Thickener 

…

Ingredient 
Properties:

HLB value, 

viscosity, 

particle size, 

molecular structure

…

Processing 
Steps: 

Grind Mixing

Letdown Mixing

…

Formulation 
Composition: 

Mass composition,

Molar composition

Target 
Properties: 

Gloss

Syneresis

…

200 distinct formulations

DATA OVERVIEW
• 200 formulations

• 20 ingredients

• Raw material properties

• Ingredient roles

• Processing conditions



Incorporate Domain Knowledge into the Model Graph

AI MODE L

MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  

F O R M U L AT I O N S

Materials Aware Model Graph

• Different graph nodes indicate 

different methods of 

“featurizing” the training data 

• By imparting domain 

knowledge to the model, it can 

do more with less data.
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Materials Aware 

Featurization
• Formulation Composition

• Chemical Information

• Material Properties

Domain Knowledge 

Incorporation
• Leverage Known Heuristics

• Incorporate Analytical Relationships

Raw Training Data

ML Predictions
• Simultaneous Prediction of 

Multiple Properties

• Uncertainty Estimates 



What did we “tell” the model?

BUILDING DOMAIN KNOWLE DGE  INTO AN AI MODE L
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  

F O R M U L AT I O N S

The particle size of the 

acrylic impacts the gloss 

The HLB value of the 

surfactant impacts solution 

stability

The formulation composition 

dictates the system behavior

The thickener-to-surfactant 

ratio impacts the solution 

stability

The IR  Backscatter is a good 

leading indicator for syneresis

Various measurements 

associated with solution 

stability exhibit correlated 

behavior



Cross-validation enables model evaluation over training data

MODE L VALIDATION
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  

F O R M U L AT I O N S



Define your virtual lab bench, and set performance goals

GENE RATIVE  DE S IGN

MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S  - A I  W O R K F L O W  C O M P O N E N T S

• Constrain relevant degrees of freedom

• Amount of an ingredient

• Number of ingredients of a certain type

• Ratio of mean properties

• Explore specific hypotheses

• Swap ingredients

• Adjust ingredient quantities

• Adjust processing parameters
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• View predicted performance along 

parameters of interest

• Amount of an ingredient

• Multiple predicted objectives

• Select promising candidates

• Feasible based on domain knowledge

• Test unintuitive combinations

• Weigh uncertainty vs. performance



Define formulation heuristics, set design targets, and evaluate candidates

GENE RATIVE  DE S IGN GUIDE LINE S  AND GOALS
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S  - A I  W O R K F L O W  C O M P O N E N T S

Use the machine 
learning model to 
“search” for optimal 
formulation candidates

“Use all of the same 

ingredients as the 

training data, except for 

the APEO surfactants”

“Choose among six modern 

surfactants which are not APEO 

based, and propose formulations 

which will meet specific stability and 

appearance targets” 

Define Generative 
Design 
“Search Space”

Set 
Generative 
Design 
Targets

Target 1: 0 syneresis after 1 week

Target 2: 60 degree gloss 

measurement of 60

Target 3: Viscosity of 100 s-1

Candidates 

near target 

values rank 

highly



SL enables efficient experimental design for multi-objective problems

CANDIDATE  SE LE CTION & SE QUENT IAL LE ARNING
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S  –

S E Q U E N T I A L  L E A R N I N G

Performance Targets:

• Target 1: 0 syneresis after 1 week

• Target 2: 60 degree gloss measurement 

of 60

• Target 3: Viscosity of 100 s-1

Candidate selection criteria:

• High ”Score”

• Realistic formulations

• Contains only non-APEO based 

surfactants

• Explore six distinct surfactants



SL was used to co-optimize gloss, stability, and rheology using novel surfactants

SE QUENT IAL LE ARNING RE SULTS
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S  –

S E Q U E N T I A L  L E A R N I N G

Sequential Learning 
Round 1

• Formulated 4 AI generated 

paints

• Re-trained model with new 

data

• Poor performance:

• syneresis ❌

• gloss❌

• viscosity❌

Sequential Learning 
Round 2

• Formulated 4 AI generated 

paints

• Re-trained model with new 

data

• Good syneresis, okay gloss

• syneresis ✅

• gloss❌

• viscosity ✅

Sequential Learning 
Round 3

• Formulated 8 AI generated 

paints

• Re-trained model with new 

data

• Excellent Performance

• syneresis ✅

• gloss ✅

• viscosity ✅

SL 

1.1
SL 

1.2

SL 

1.3

SL 

1.4 SL 

2.1

SL 

2.2
SL 

2.3

SL 

2.4



SL1 approached stability targets, but included failures

SE QUENT IAL LE ARNING RE SULTS
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S  – S E Q U E N T I A L  

L E A R N I N G

Performance optimization achieved with 90% less 
experiments



The focus of SL2 and SL3 was co-optimization of stability and gloss

SE QUENT IAL LE ARNING RE SULTS
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S  – S E Q U E N T I A L  

L E A R N I N G



23

SUMMARY + Q&A 



Sequential learning enables new material 

development
• Sequential learning enables co-

optimization over multiple input and 

output dimensions

• Structuring & annotating data

• Incorporating domain knowledge

• Defining realistic experiments

• Executing sequential learning

• Sequential learning guided experiment 

enabled design of novel paint 

formulation

• APEO free ingredients

• Achieved target stability, gloss and rheology

SUMMARY
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MAT E R I A L S  I N F O R M AT I C S  F O R  C O AT I N G S  F O R M U L AT I O N S  

– S U MM A R Y

Ready to get 
started? 
Check out our webinar

How to prepare chemicals 
and materials data and 
teams for AI

Thanks to:

Tyler Bell, MS, Account Executive*

Erik Sapper, PhD, Associate 
Professor †

James Shannon, MS†

* Citrine Informatics
† California Polytechnic State University



QUE STIONS?

Will Erwin

werwin@citrine.io


