

Achieving Sustainability and Innovative Targets

with the latest Additive Technologies

CTT 2025

Core Values and Vision

Product Innovation

- Product Innovation longevity, resource efficiency
- Innovative Business Models
- Closed-loop systems
- Sustainability

Safe Workplace

- Safe working environment
- Health, safety, and environment
- Employee protection

Manufacturing

- Resource Efficiency
- Waste Minimization
- Energy Efficiency
- Social Responsibility

Environment

- Sustainable Technologies
- Emission Reduction
- Environmental Initiatives
- Environmental Stewardship

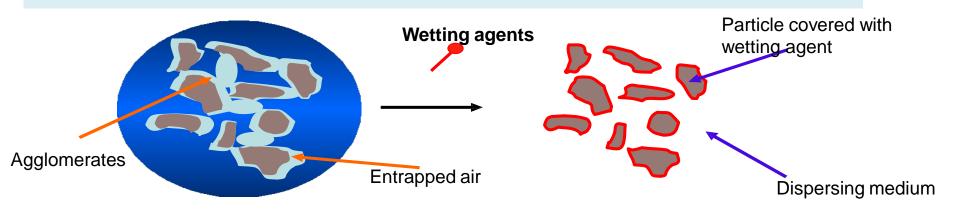
Contributions to Sustainability

PTFE/ PFAs-Free

Biocide -Free

Label-Free

Formaldehyde-Free



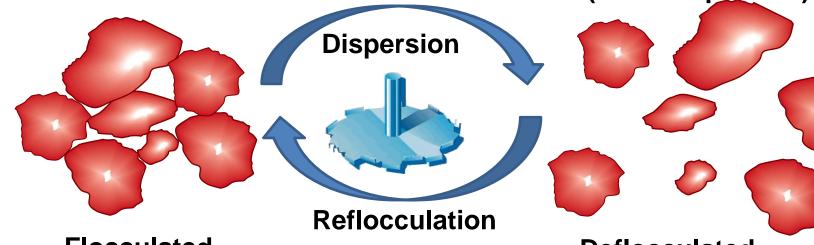
The Science behind Pigment Wetting and Dispersion Stabilizing Additives

Pigment Dispersion & Stabilization

1. Pigment wetting: displacement of air and moisture at the pigment surface by the liquid of the mill-base

Good wetting (adjusting Surface Tension liquid phase, through wetting agent):
✓ enabling high pigment solids

- ✓ low mill-base viscosity
- √high milling efficiency


Pigment Dispersion & Stabilization

Pigment dispersion: the application of shear of sufficient energy into the millbase to separate pigment agglomerates into their

Agglomerate
Flocculate

Wetting and Dispersing
Additives

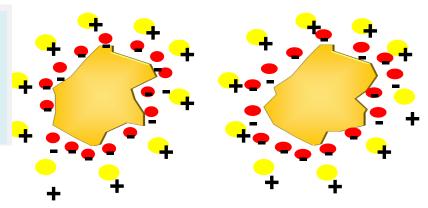
Primary Particle (Ideal Dispersion)

Flocculated

Deflocculated

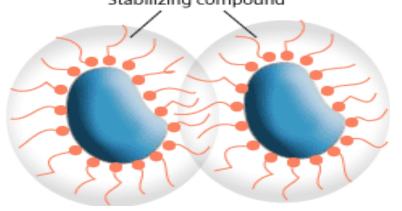
What's the Difference?

- Wetting additives bring the pigment surface into intimate contact with the continuous phase
 - displace air, brings pigment into the liquid phase
- Dispersants coat individual pigment particles to minimize particle to particle interactions providing observed lower viscosity
 - stabilize dispersed pigment, prevents flocculation


Pigment Stabilization

Pigment dispersion:

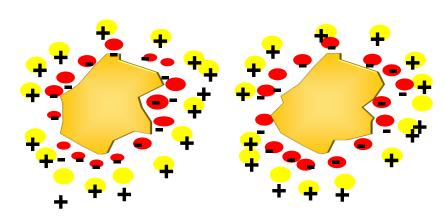
dispersed particles must be stabilized to prevent flocculation, agglomeration. Main stabilization mechanism for waterborne systems:


Electrostatic repulsion Adsorbed polyelectrolytes

- Stabilization efficiency increases with density of electrical double layer
- Additives used for dispersion in waterborne systems are high molecular weight products containing charged polymeric side chains

Steric or Entropic Stabilization

Main stabilization in solvent borne systems


Dispersant Requirements:

- Contains affinic groups providing strong adsorption on pigment surfaces
 Resin/solvent compatible chains directed into the surrounding vehicle.

Steric or Entropic Stabilization Stabilizing compound

Electrostatic Repulsion

Main stabilization in solvent systems

Main stabilization in aqueous systems

Dispersant Requirements:

- Contains affinic groups providing strong adsorption on pigment surfaces Resin/solvent compatible chains directed into the surrounding vehicle.

Dispersant Requirements

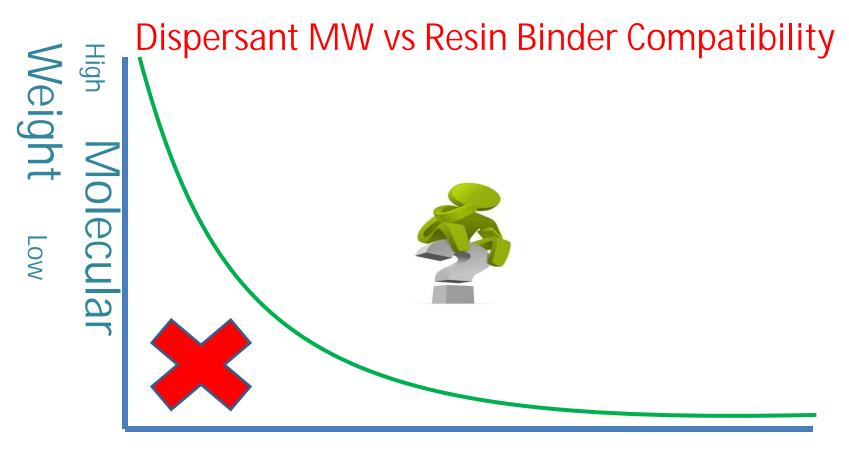
Resin compatibility Solubility Pigment dispersion stability Pigment affinic/anchoring groups compatible with pigment surface chemistry No degradation of important film properties No reduction in application properties

Technology Challenge

- A. For waterborne dispersions
 - a) Wetting hydrophobic pigments, extenders
 - b) <u>Electrostatical stabilization</u>, for all pigments
 - Additionally: transition to steric stabilization during dry; the drying film shifts from aqueous to be more organic and hydrophobic due to loss of water and concentration of the resin emulsion particles

Technology Challenge

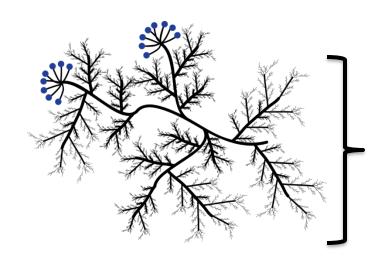
- A. For apolar solvent-borne dispersions
 - a) Wetting hydrophobic and hydrophilic pigments fillers, and extenders
 - b) Steric for all pigments, as solvents evaporate causing the system to shrink and particulates to compact, stability must not be compromised by the loss of solvents


Remarks

Pigment Wetting is a relatively slow process (Washburn Equation)

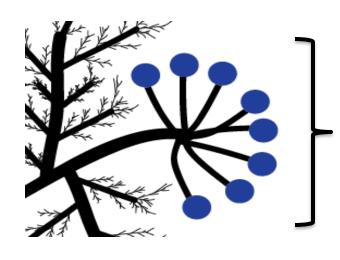
Rule 1) the higher the MW of the surfactant, the slower the wetting

Rule 2) the higher the MW of the dispersant, the stronger the steric stabilization

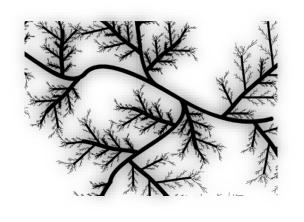

Compatibility

Patcham New Technology

Broad Dispersion Compatibility Stability of of Lower Higher Molecular Molecular Weight Weight **Additives Additives** High Molar Volume


High Molar Volume Technology

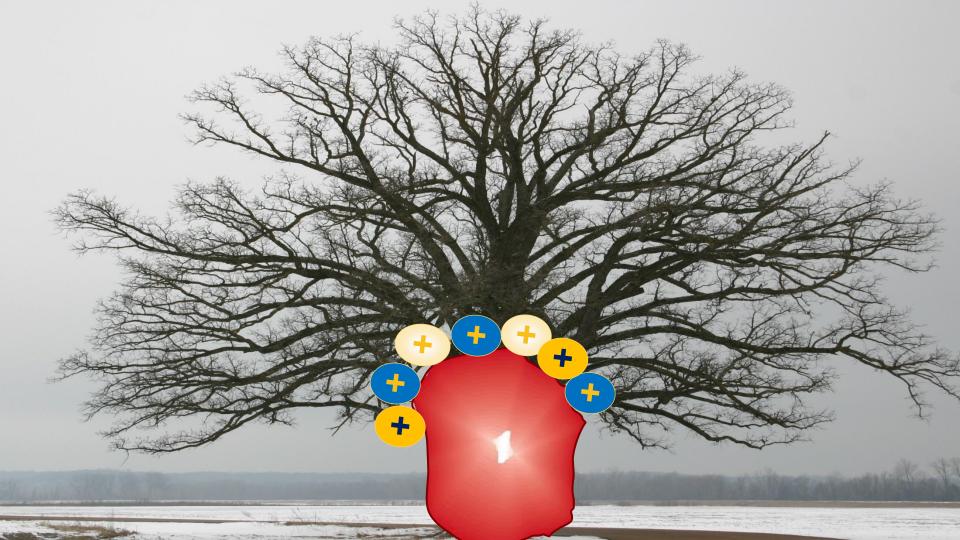
Higher volume for a given mass of polymer Branched polymeric structures between the pigment particles creates greater steric repulsion


High Molar Volume Technology

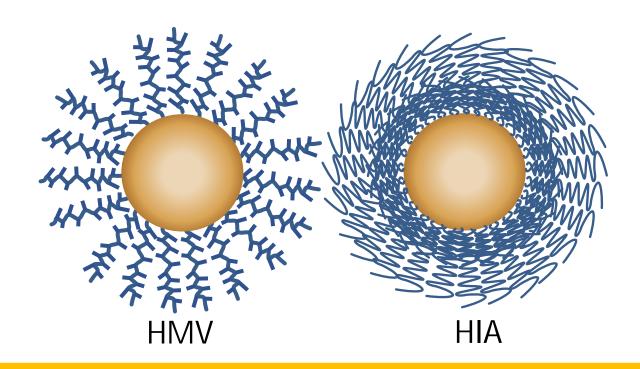
Multiple anchoring
groups
Faster wetting rate
and lower mill base
viscosity
Stronger Stabilization

High Molar Volume Technology

Lower MW Branched Polymeric Segments


Allows it to be used in a wider range of resin systems without incompatibility issues of similar MW linear or unbranched structures

Compatibility


Advantages of HMV Technology

- Faster Wetting/Dispersion > Productivity
- Optimize grinding times, better performance
- Increased stabilization improves stability
- Compatible in wide range of resins and solvents
- Development of resin minimal and resin free pigment concentrates easily achieved

HMV compared to HIA

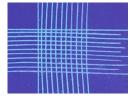
Hyper Intermolecular Association

- Concept describing the potential of dispersant polymers for forming multi-layer molecular structures with neighboring components: nonadsorbed dispersant molecules, binders, including solvents
- HIA refers to the capacity of adsorbed dispersant to immobilize neighboring components, thus increasing the thickness of the adsorbed protective layer
- HIA is essential in increasing stabilization efficacy of low molar mass dispersants, as the individual molecule is too small for the formation of a stable protective layer

Pat-Add DA 3054

Compatible Resin Systems				
Resin Systems Description				
2K PU	Acrylic Polyol			
Ероху	Bisphenol A type cured with Amine or Amide			
TPA	Acrylic Resins			
Acid Cure	Short Oil Alkyd and UF cured with PTSA			
Alkyd-Melamine	Short Oil Alkyd with MMF			
Polyester-Melamine	Saturated Polyester with MMF			
Universal Grinding Resin	Aldehyde based			
Long Oil Alkyd	Vegetable oil and fatty acid based			
Medium Oil Alkyd	Vegetable oil and fatty acid based			
Short Oil Alkyd	COFA-based			
	CAB 381			
CAB Solution	CAB 531			
	CAB 551			

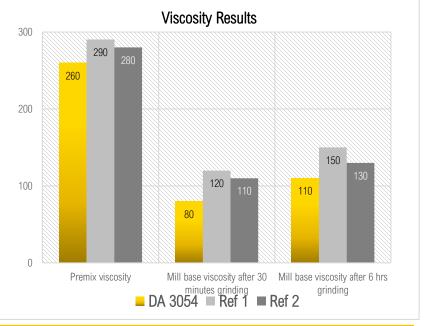
Solubility					
Solvents					
MPA	•				
Xylene	•				
Toluene	•				
MIBK	•				
EEP	•				
Acetone	•				
Di-Acetone alcohol	•				
n-Butyl Acetate	•				
Ethyl glycol acetate	•				
IPA	0				
N-Butanol	0				
Solvesso 100	•				
Solvesso 150	•				
Oxsol 100	•				
Propylene carbonate	•				
MTO	0				
Soluble • Insoluble o Partially soluble •					


Pat-Add DA 3054

Direct Grinding Systems using PB 15:3					
	SB 2K PU	SB Epoxy	Polyester Melamine		
Pigment Loading	4.5%				
%SOP of New Dispersing Agent	35%				
Paint Properties					
Fineness of Gauge	7+	7+	7+		
Visosity, KU	68	88	63		
Gloss @20°	93	99	68		
Gloss @60°	95	100	87		
Adhesion test	Pass	Pass	Pass		
Conical Mandrel Bend test	Pass	Pass	Pass		
MIBK Rub (100 rub)	Pass	Pass	Pass		
MEK Rub (100 rub)	Pass	Pass	Pass		

Adhesion, 2mm crosshatch

Conical Mandrel Bend test



Pat-Add DA 3054

2K PU Topcoat Black

Pat-Add DA 3054

Pigment Concentrates with Organic Pigments

Sudaperm Red 2957		Hostaperm Red E5B02		Hostaperm RL spec	
PR 254		PV 19		PV 23	
Initial	After Stabilit y	Initial	After Stabilit y	Initial	After Stabilit y
		RMPC in 2K	PU System		
	With the				
	MATERIAL PROPERTY.				1000

	Sudaperm Red 2957		Hostaperm Red E5B02		Hostaperm RL spec	
	PR 254		PV 19		PV 23	
Properties	Initial	After Stability	Initial	After Stability	Initial	After Stability
Viscosity, KU	65	66	66	83	75	77
Masstone						
L*	41.34	41.50	35.78	36.02	27.03	27.30
a*	45.55	45.96	34.45	34.80	2.00	-3.09
b*	25.00	25.68	12.56	12.66	-1.94	-2.60
Gloss @ 20	98	91	92	91	89	84
Gloss @ 60	101	95	95	95	94	92
dE, Rub out Tint Tone	0.54	0.29	0.68	0.43	0.80	0.90

Latest Dispersant Technology

Opportunities and Applications

Solventborne Systems:

Automotive Coatings

Wood Coatings

Industrial Coatings

Protective and Marine Coatings

Coil Coatings

Inks

SB Pigment Dispersions

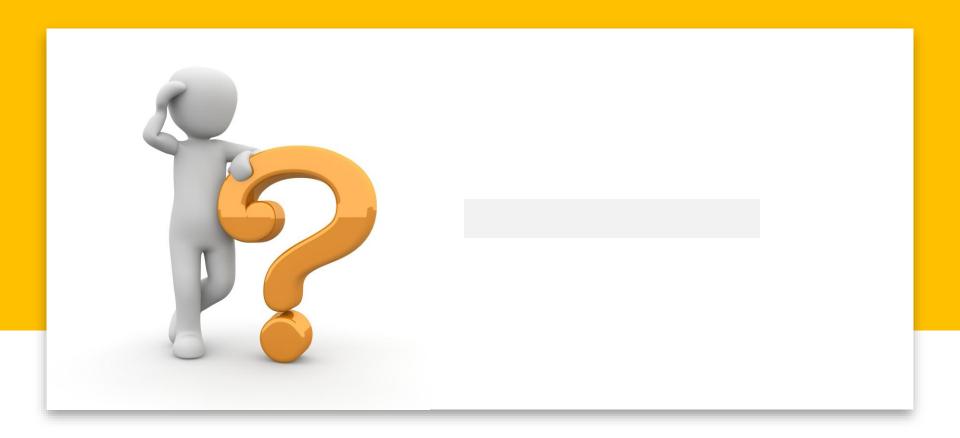
Now, Commercially Available Dispersant Technologies for Solvent Borne Systems

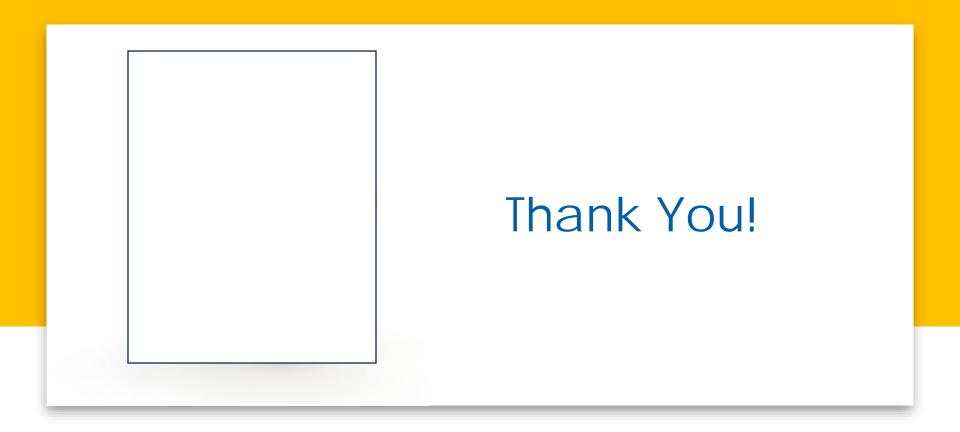
Water Borne Systems

Solvent Free Systems

- These technologies can each be used to make a complete Colorant System
- Can be used to make co grinds in traditional paint manufacturing methods
- Can be used with traditional grinding resins

Dispersant Selection


- Determine solubility
- Determine compatibility
- Establish surface chemistry suitability
- Optimize order of addition (laboratory vs production)
- Confirm pigment dispersion stability and compatibility
 - From liquid to solidification following application
- Optimize use level
- Evaluate color stability
- Test film properties


Aknowledgement of Headquarters Development Team

- Bhavesh Patel
- Johan Bieleman

Contact us:

PATCHAM USA LLC

10 Commerce Road, Fairfield, New Jersey – 07004 (201) 293 4282 (201) 820 0818

PATCHAM FZC

P. O. Box 7753, SAIF Zone, Sharjah, UAE +971 65570035 +97165570038

www.patchamItd.com

Disclaimer

While every effort is made to provide accurate and complete information on PATCHAM ADDITIVES, various data may vary depending upon different raw materials, formulations, test procedures and test conditions.

The accuracy, reliability, or totality of the information are not guaranteed or warranted in any way. PATCHAM FZC and its representatives disclaim liability of any kind whatsoever, including liability for quality, performance and fitness for a particular purpose arising out of the use, or inability to use the information.