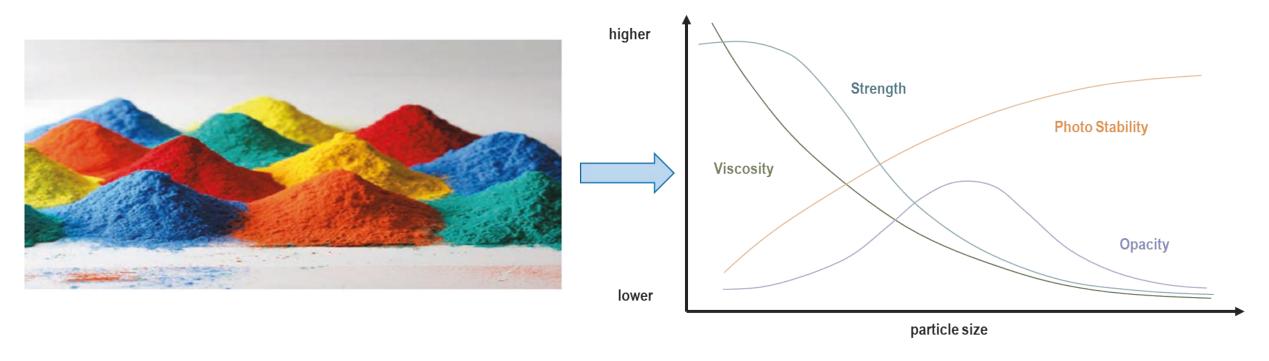


# Dispersant Technology Fundamentals

Tony Moy

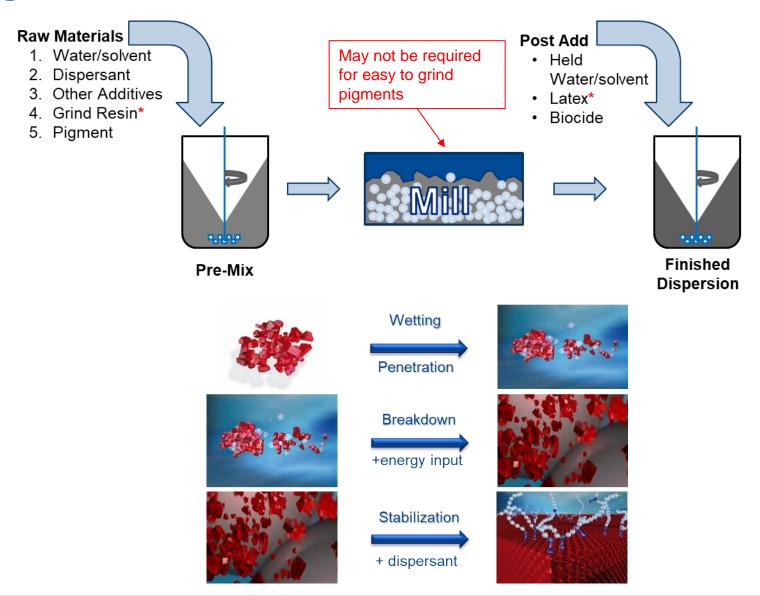
Sr. Technical Specialist

**BASF Formulation Additives** 


# **Agenda**

- What, Why, and How
- Dispersant types, associated pigment applications, and considerations for selection
- Optimizing dispersant concentration/level in a formulation
- Process considerations
- Case Studies plus Bonus Topic
- Questions?

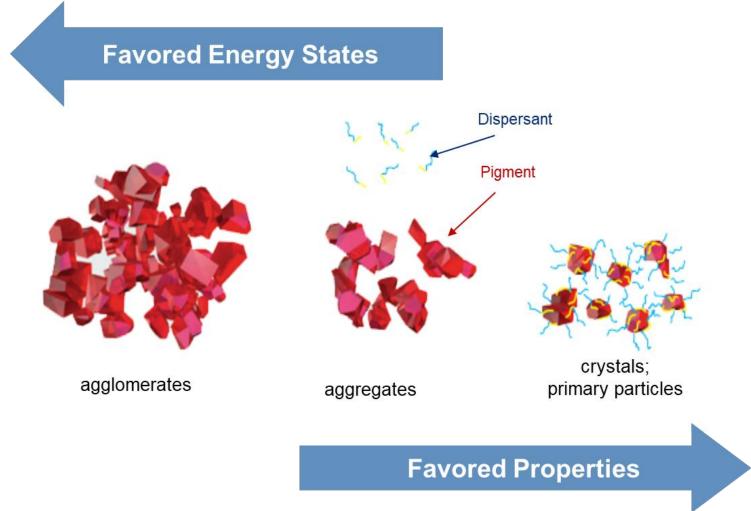



# What are Dispersants?

- Dispersants are chemical substances that serve to stabilize solids/particles (pigments) in a liquid dispersion/suspension
- In the coatings industry these are in the form of: surface actives (surfactants) and polymers






# **Dispersing Process**





# Why use Dispersants?

Why they are needed



Dispersants enable favored properties of pigments



# Why use Dispersants?

## Value of Dispersants

- Minimize interaction of pigments
  - Reduce viscosity
  - Enhance stability of pigment and dispersion
  - Reduced settling and kick out
  - Maximize performance contribution of pigments (color, protection, etc.)
  - Minimize the amount of pigment required to do the job
- More formulation latitude: ability to load more (solids) into formulation
  - Introduce filler/extender pigments
  - Use less resin to achieve mechanical properties
  - Use less primary pigment
- Productivity
  - Shorter dispersion time
  - Transfer product with less energy and time

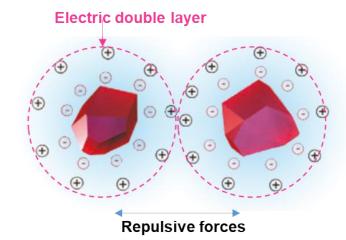


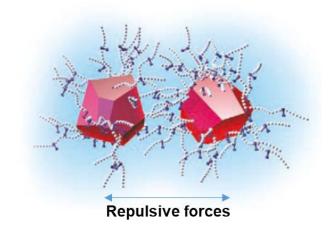


# **How do Dispersants work?**

## **Dispersant Mechanisms**

#### Electrostatic

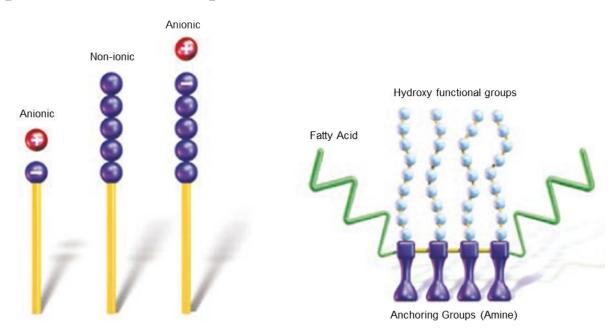

 Dispersant attaches to pigment and establishes electric double layer causing repulsive forces


## Steric

 Dispersant attaches to pigment and has segments which stand out from pigment surface to provide mechanical repulsive forces

#### Electrosteric

A combination of both






Ultimately force of repulsion created by dispersant must overcome attractive forces of pigment particles to realize a stable state



# **Types of Dispersants**

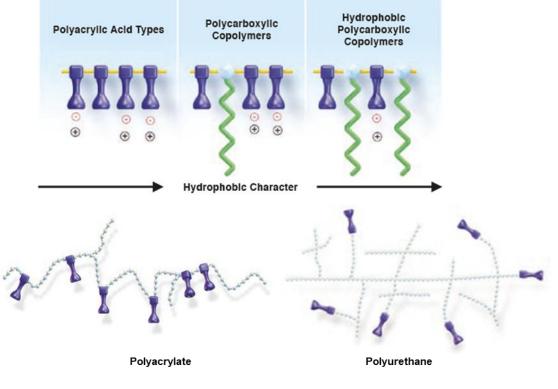


## Low Molecular Weight

Oligomeric (FAME) Types

MW: 1000 - ~5000

Fatty Acid Modified Esters


#### **Surfactant Types**

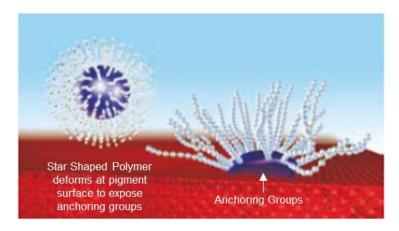
Ionic and Non-ionic

MW < 1000

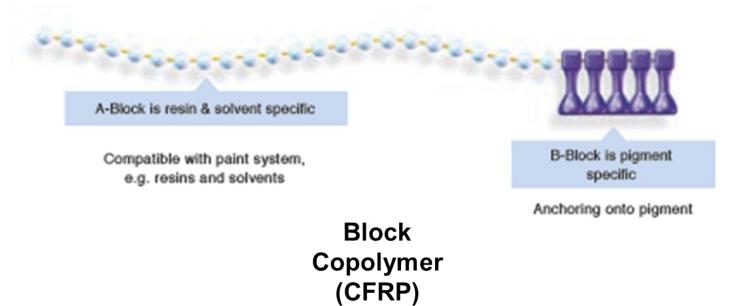
#### **Examples:**

- Sulfates/sulfonates
- Phosphate esters
- Fatty acids
- Quaternary ammonium/Imidazolium salts




## **High Molecular Weight**

- Polyacrylic Acid (Anionic)
- Polycarboxylic Copolymers (Anionic)
- Polyacrylates
- Polyurethanes


MW > ~5000



# **Types of Dispersants**

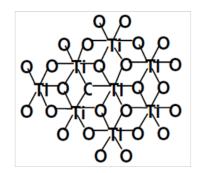


Star Shaped Polymer



## **Advanced High Molecular Weight**

- Star Shaped Polymers
- Block Copolymers via Controlled Free Radical Polymerization (CFRP)

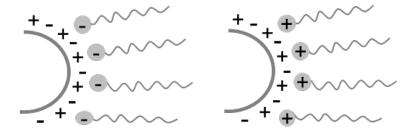

MW > ~5000



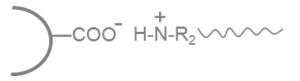
## **Stabilizing Inorganic Pigment**

#### **Inorganic pigments**

- Polar surface: broken bonds leave charges (positive, negative, mostly heterogenous) on surface
- Large particle size, low specific area
- Easy to disperse
- Easy & stable anchoring, less tendency to re-agglomerate




Broken bonds at TiO2 surface


#### **Anchoring group**

- carboxylic, sulfonic and phosphoric <u>acid</u> groups and their salts
- amines; ammonium

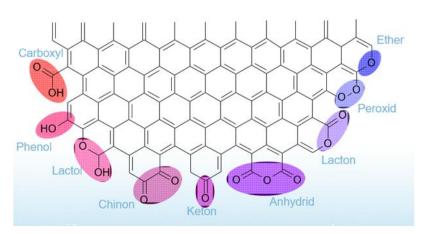
Anchoring via ionic interaction



Anchoring via acidic/basic interaction



### **Dispersant selection**

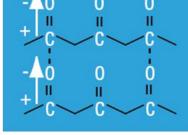

- LMW dispersant: good viscosity reduction
- HMW dispersant: recommended for color pigment dispersing

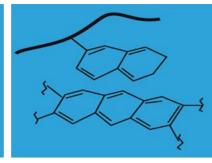


# **Stabilizing Carbon Black and Organic Pigment**

## **Organic pigment**


- Non polar surface: no surface charge, contains nitrogen derivatives, aromatic ring, ester, ketone and ether no surface charge
- Smaller particle size high specific area
- Difficult to disperse
- Difficult & unstable anchoring, tendency to re-agglomerate





CB surface

#### **Anchoring group**

Amine, cyclic ring







Hydrogen bonding

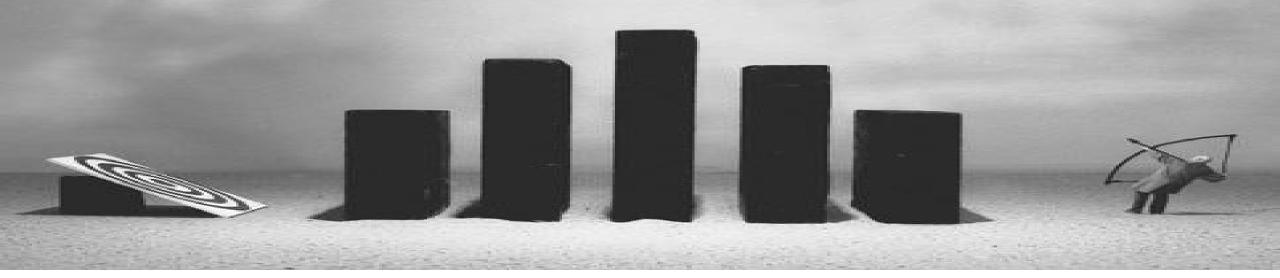
Dipole-dipole interaction

π-π interaction

#### **Dispersant selection**

HMW for good dispersing and stabilization




# **Selecting a Dispersant**

- Key Questions to consider when selecting/using dispersants
- 1. What is being dispersed? Pigment typically dictates the dispersant type
  - 2. What is it dispersed in? Dispersant must be compatible with the media
    - 3. How is it dispersed? More difficult to disperse pigments require higher energy mixing
      - 4. What is the objective? There will typically be a compromise in performance targets

Dispersant(s) to trial



# Selecting a Dispersant: General Guidelines – Pigments & Benefits

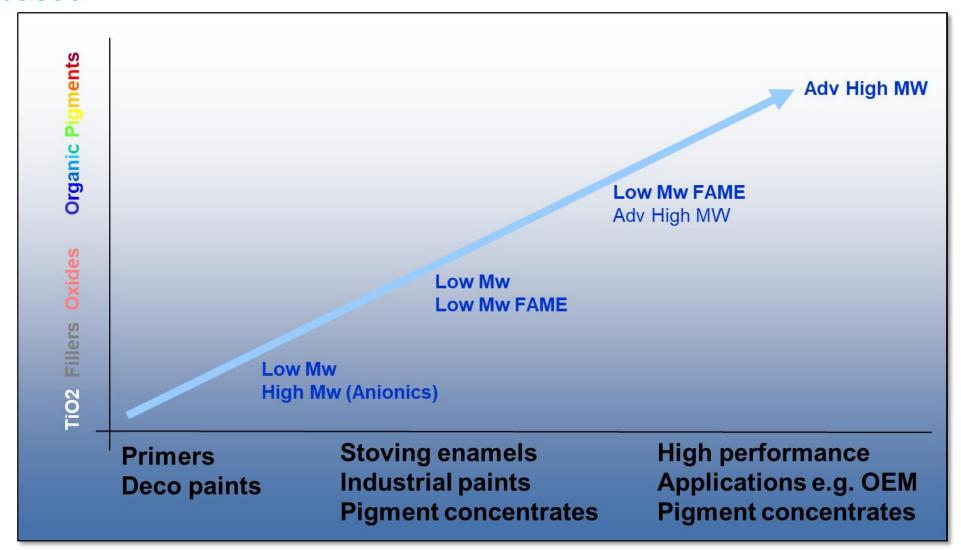


## LMW dispersants:

- Fillers, extenders, TiO2
- Economic solutions with less demand for performance
- Good viscosity suppression
- Combined with resin or HMWD
- Solvent and water borne

## Oligomeric (FAME) dispersants:

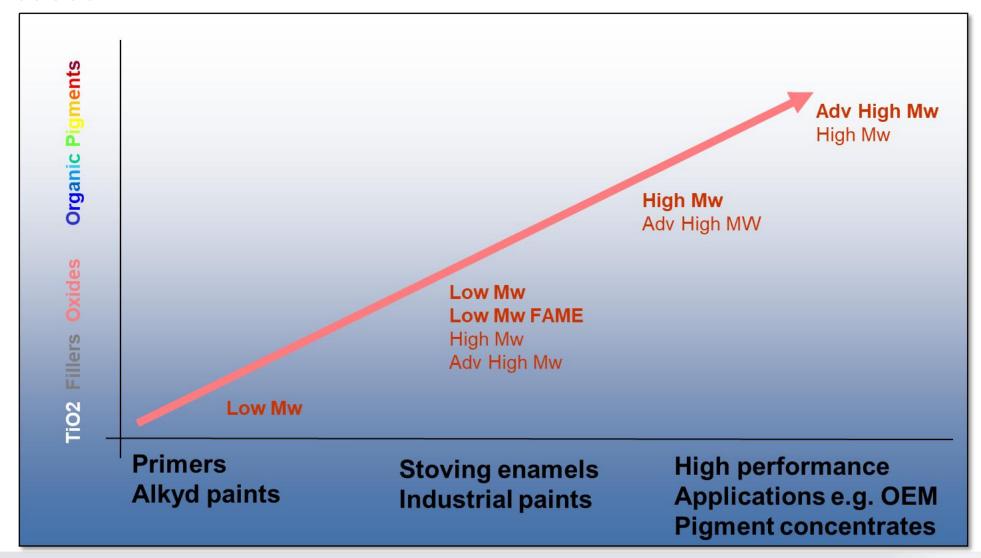
- Broadest compatibility
- Universal application
- Good viscosity suppression
- In some cases, can provide controlled flocculation for improved stability


## HMW dispersants:

- For <u>organic</u> and inorganic pigments (Universal)
- Lowest viscosities
- Highest color strength
- Highest gloss
- Best stability



## **Dispersants – Pigments – Applications**


## Water-based





# **Dispersants – Pigments – Applications**

## Solvent-based





# **Pigment Grinding Reference**

| Pigment Type                                                    | Grind                    | Grind Equipment                  | Media                                        | Media Size (If applicable) |  |
|-----------------------------------------------------------------|--------------------------|----------------------------------|----------------------------------------------|----------------------------|--|
| White                                                           | Easy                     | HSD or Sandmill                  | Glass                                        | 2.0 mm                     |  |
| Inorganic Fillers                                               | Easy                     | HSD                              | N/A                                          | N/A                        |  |
| Aluminum, Pearls (Mica) – Effect<br>Pigments                    | Don't grind              | Paddle mixer                     | N/A                                          | N/A                        |  |
| Black (Organic)                                                 | Difficult                | HSD Premix + High Energy<br>Mill | Zirconia or Yitria Treated<br>Zirconia (YTZ) | 0.4-0.8 mm                 |  |
| Blue (Phthalo)                                                  | Difficult                | HSD Premix + High Energy<br>Mill | Zirconia                                     | 0.4-0.8 mm                 |  |
| Violet (Quinacridone)                                           | Difficult                | HSD Premix + High Energy<br>Mill | Zirconia                                     | 0.4-0.8 mm                 |  |
| Red (DPP)                                                       | Difficult                | HSD Premix + High Energy<br>Mill | Zirconia                                     | 0.4-0.8 mm                 |  |
| Red (Quinacridone)                                              | Moderate to<br>Difficult | HSD Premix + High Energy<br>Mill | Zirconia                                     | 0.4-0.8 mm                 |  |
| Green (Phthalo)                                                 | Difficult                |                                  | Zirconia                                     | 0.4-0.8 mm                 |  |
| Yellow (Isoindoline)<br>(Benzimidazalone)<br>(Bizmuth Vanadate) | Moderate                 | Sandmill                         | Glass                                        | 2.0-4.0 mm                 |  |
| Trans Iron Oxide (Red, Yellow)                                  | Moderate to<br>Difficult | HSD Premix + High Energy<br>Mill | Zirconia                                     | 0.4-0.8 mm                 |  |

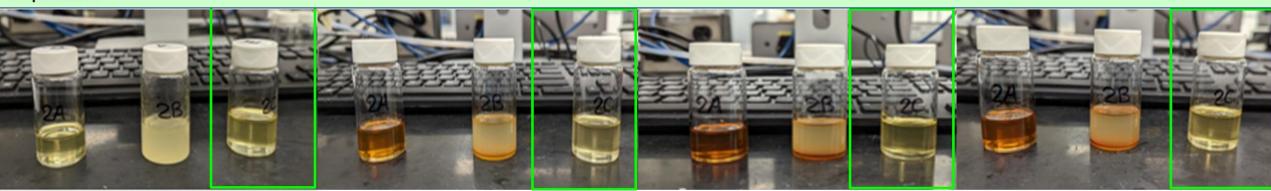


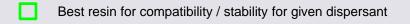
# **Optimizing the use of Dispersants**

## Best Practices after a dispersant has been selected

- Avoid mixing pigment types in a single dispersion if possible
- Use of a single, universal dispersant for pigments can be advantageous if compatibility is important
  - Note that these types of dispersants may not give best dispersing results for all pigments; compromise for compatibility
- Confirm compatibility of dispersant with key liquid ingredients in formulation
- If replacing an existing dispersant with a new one, account for substitution based on active solids
- Run a Dispersant Demand Ladder Experiment to determine optimal concentration
- Once an optimal dispersant level is chosen, run grind experiments
- Correlate property development vs grind time to determine optimal grind time
- Perform 2 week accelerated aging study (120 °F) to confirm dispersion stability
  - Test properties before and after aging
- If other pigmented dispersions will be mixed, then check for compatibility
  - Flood, float, color acceptance
  - May need a fatty acid (compatibilizer/emulsifier) or controlled flocculation type of dispersant



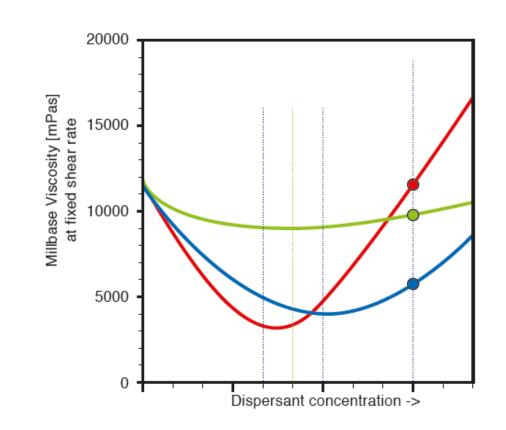

# **Example of Compatibility Check for Dispersants**


Various dispersant/resin combinations exposed to 100 °C over 72 hour duration

- Assess for initial compatibility
- Assess for thermal stability over time

| Initial      |              |             | 24 Hours    |              | 48 Hours    |             | 72 Hours     |             |             |              |             |
|--------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|
| Ester Resin  | Polyol Resin | Epoxy Resin | Ester Resin | Polyol Resin | Epoxy Resin | Ester Resin | Polyol Resin | Epoxy Resin | Ester Resin | Polyol Resin | Epoxy Resin |
| Dispersant A |              |             |             |              |             |             |              |             |             |              |             |
|              |              | / 4 .       | 18/1        |              |             | 10.15       |              | 1           | The second  | 1. 1         | 4           |
|              | Les a        |             |             | 1            |             | 7           |              |             |             | 335 mm       | ELVAN       |
|              | 5333 B       | 25 7 25     | 2000        | ## N S       | The same    | 23/12/12    | Sale         |             | la la       | 13           |             |
|              |              | -           | IA.         |              |             |             |              |             |             |              |             |
| -            |              |             |             |              |             | 100         |              | No.         |             |              |             |
| 100          |              |             | 22 22       |              |             |             |              |             |             |              | +           |










# **Dispersant Demand Curve Viscosity Example**

- For a given formulation with:
   Fixed pigment, resin, solvent/water concentrations
- Run ladder experiment varying dispersant concentration
  - Low to High
  - Refer to supplier TDS for recommended range or
  - Use rough rule of thumb for center point:
    Active dispersant amt = Pigment Surface area/4 on pigment (%)
  - Measure low shear viscosity(e.g., Brookfield at fixed RPM)
  - Plot measured viscosity vs Dispersant Concentration
  - Low point on curve corresponds to optimal dispersant concentration for viscosity suppression



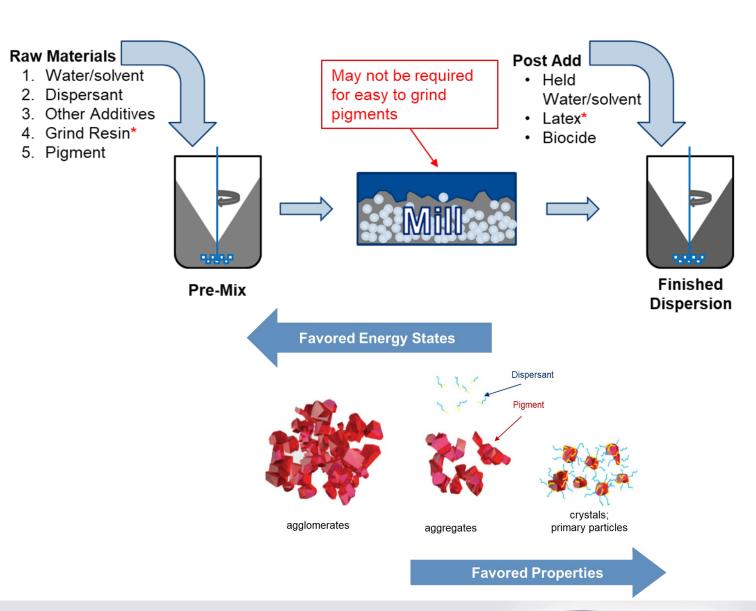
#### Dispersant performance

Ladder study 1 > 3 >> 2

#### Dispersant demand

minimum viscosity curve

#### Dispersant level


determined with ladder study

Running one point study can lead to incorrect conclusion!



# **Processing considerations**

- Determine grind/processing requirements based on pigment type
  - For easy to grind pigments a simple high shear mixing operation is sufficient
  - For hard to grind pigments a premix followed by milling is required
- Add liquid ingredients first\*
- Add solids (pigments) slowly
  - Allow time to fully wet pigment
- \*May need to hold back some solvent/water to increase solids/viscosity
  - Increase energy of mixing to help break pigment down to primary size
- 5. Pull samples during grind to track property (color, degree of grind, visc.) as a function of grind time
- Add back liquid hold out as a letdown to create final dispersion





## **Processing makes a difference**

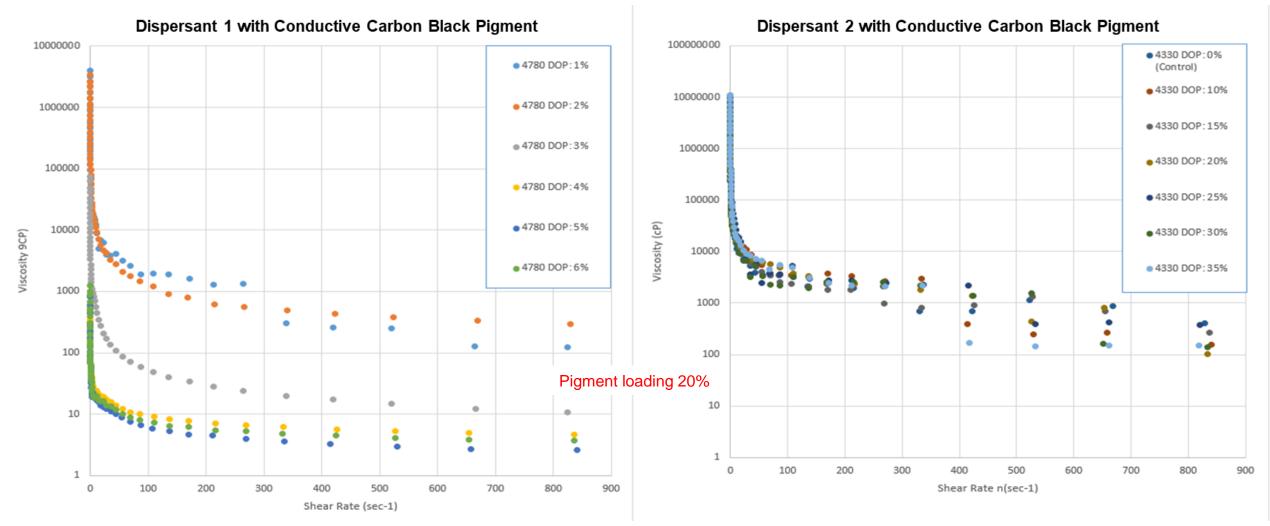
## Dispermat (HSD)

- Carbon Black Pigment
- Oligomeric FAME Dispersant 22.5% DOP
- 1.0% Wetting Agent

Shaker Grind 0.6-0.8 mm Zr



- Carbon Black Pigment
- Advanced High MW (CFRP)
   Dispersant 37.5% DOP



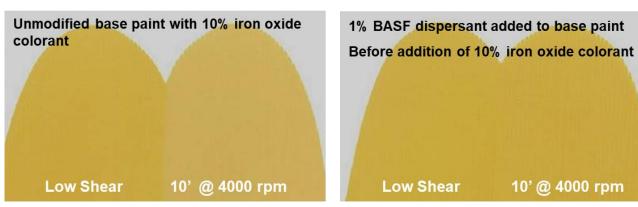





Soft Settle

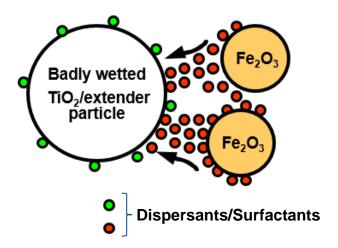
# **Case Study 1: Dispersing Conductive Carbon Black pigment**



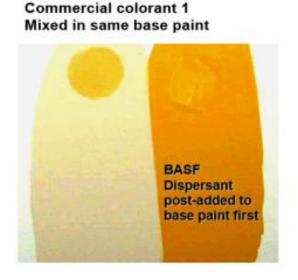

The right dispersant can make a big difference!



# Case Study 2: Addressing Color Acceptance Issues


#### **Problem:**

- Dispersant leached from colorant by poorly wetted TiO2/ extender
  - Colorant flocculates over time
  - Color strength decreases over time




High shear incorporation of colorant mimics what happens over time

Decrease in color strength after high shear incorporation of colorant incorporation of colorant incorporation of colorant



#### **Dispersant X** significantly improves color acceptance







## **Addressing Settling**

## Pigment Physical Phenomena and Thermodynamics

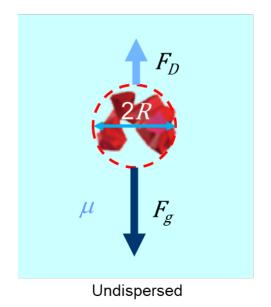
## Settling

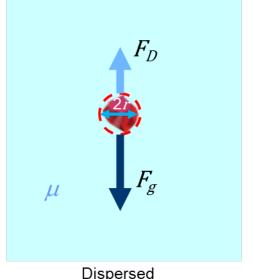
- Function of a variety of aspects: gravity, density of pigment and fluid, fluid viscosity, and pigment size (Stoke's Equation)
- Dispersants minimize pigment interactions → hence smaller effective particle size
- In low viscosity regimes, the effect of dispersants may not be enough to mitigate settling

## Stoke's Equation for Settling

$$v = \frac{2}{9} \frac{(\rho_p - \rho_f)}{\mu} g^{\mathbf{R}^2}$$

v – settling viscosity


 $\rho_{\rm p}$  – particle density


 $\rho_{\rm f}$  – fluid density

 $\mu$  – fluid (dynamic) viscosity

g - gravitational constant

R – particle radius





Dispersed (smaller effective diameter)

 $F_D$  – Drag force, function of particle diameter, viscosity, density differences

 $F_g$  – Gravitational force, function of particle diameter, viscosity, density differences



# **Addressing Settling Dispersant with Rheology Modifier**

No Rheology Modifier With Rheology Modifier





No Rheology Modifier With Rheology Modifier













## **Tony Moy**

Sr. Technical Specialist

Anthony.moy@basf.com

Website: basf.us/dpsolutions

Email: formulation-additives-nafta@basf.com