

Sustainable Powder Coating Developments

Jan Pieter Drijfhout - Covestro (Netherlands) B.V.

- Sustainability in powder coating
- Explore various sustainable solutions
- Concluding remarks

Innovation is the driver for sustainable coatings solutions

- Move away from solvent-based coating technologies
- Optimize production and application techniques
- Conduct LCA studies to create insights

Sustainable solutions

- Increase coating performance
- Reduce raw material use
- Decrease energy usage

- Use of powder coatings on non-standard substrates
- Reduce emissions and (potential) harmful components
- Renewable / recycled raw materials

- Polyester powder coating resin synthesis
 - Bulk reaction without solvent
 - Batch process, on the lab, and also in production
 - Monomers charged in one or multiple stages
 - Reaction performed at various temperatures
 - Specifications determined during production process
 - After discharge resin solidifies at RT

Powder coating process

• Making a powder paint

- Pre-mixing components
- Melt-extrusion of all components
- Grinding and classification to obtain a powder
- Applying a powder coating
 - Electrostatically or corona spraying
 - Particles melt, fuse into a film and cure in an oven at elevated temperature
 - During cure optionally network formation due to reaction between resin and crosslinker
- Evaluation of a powder coating (testing)
 - Basis properties like gloss, flow, color, mechanical properties
 - Outdoor durability, corrosion resistance, chemical resistance

Increase coating performance

Outdoor durability

covestro

- Monomer composition of the resin
- Application method
- Including other polymers

✓ Extend the lifetime of your product✓ No need to recoat before end of live

g 75 -		Vanny
01111111111111111111111111111111111111	h	
25 -		S1-3 (PE3)

Standard white powder coating formulations	Standa
with HAA crosslinker	with N
PE1 = Polyester resin 1	PE4 = P
PE2 = Polyester resin 2	FMP =
PE3 = Polyester resin 3	S2-1 = 1
Dual layer = Polyester resin 3 with clear polyester topcoat	S2-2 = 9
	S2-3 = 3

Standard white powder coating formulations	
with NCO crosslinker	
PE4 = Polyester resin 4	
FMP = Fluor modified polymer	
S2-1 = 100% PE4	
S2-2 = 90% PE4 and 10% FMP	
S2-3 = 75% PE4 and 25% FMP	
S2-4 = 50% PE4 and 50% FMP	
S2-5 = 25% PE4 and 75% FMP	
S2-6 = 100% FMP	

Increase coating performance

Extend application space

- Enhance flexibility, while maintaining durability, of a super durable powder coating formulation
- PE5 = optimized amorphous super durable resin
- PE6 = novel crystalline resin
- PE7 = standard amorphous super durable resin

Test panel cured 15' @ 350 °F	85% PE5 15% PE6	reference 100% PE5
Reverse impact 20 i.p.	Pass	Microcracks
@ 70 μm on AQT46 (ISO 6272-1)		
Reverse impact 60 i.p.	Pass	Fail
@ 70 μm on AQT46 (ISO 6272-1)		
T-bend	то	>T3
@ 60 μm on AQT46 (ISO 3270)		
Wedge bend	Pass	>5 mm
Electrolytic tin plate (ETP) @ 30 μm	(0 mm)	
(bend and impact test model 471)		
Erichson cupping test 1+2	Pass	Fail
Electrolytic tin plate (ETP) @ 30 µm		
(ISO 11531)		

Increase coating performance

• Extend lifetime of the object

✓ Corrosion resistance combined with super durability, in a single coat
 ✓ Reduced carbon footprint and lower system costs

- PE8 Superdurable corrosion resistant resin
- PE9 Architectural corrosion resistant resin
- PE10 Superdurable reference resin

- COM1 Commercial reference powder coating
- COM2 Commercial reference powder coating

	White formulation				
	PE8	PE9	PE10		
NSS	1,4	1,4	2,0		
500 h (mm from Scribe)					
Cyclic corrosion	2,8	2,4	4,3		
20 cycles (mm from scribe)					
SAE J2334	5,1	5,5	6,9		
40 cycles (mm from scribe)					
Florida exposure	3	1	3		
(vrs)					

	Green formulation		Yellow formulation		ation	
	PE8	COM1	COM2	PE8	COM1	COM2
NSS	1,5	1,6	1,7	1,3	1,7	1,6
500 h (mm from Scribe)						
Cyclic corrosion	2,5	2,5	2,8	2,4	3,2	2,9
20 cycles (mm from scribe)						
SAE J2334	4,7	4,6	5,7	5,1	5,6	5,1
40 cycles (mm from scribe)						
QUV-B exposure	597	272	263	878	299	342
(hrs)						

• Same properties; less raw materials

Reducing layer thickness

- S3-1 Reference formulation S3-2 Reference + pigment dispersant
- S3-3 Formulation with improved resin

Formulation	S3-1	S3-2	S3-3	S3-1	S3-2	S3-3
Pigment	33 wt%	33 wt%	33 wt%	50 wt%	50 wt%	50 wt%
Flow (PCI)	7	7	7	2	3	7
Haze	23	22	22	204	178	25
Gloss 20°	94	96	99	74	82	95
L*	95	96	95	96	96	96
b*	-0.3	1.3	-0.1	-0.6	1.3	-0.4
Hiding Power*	1	1	1	4	5	5
Chemical resistance*	5	5	5	5	5	5
Heat stability*	5	3	5	5	3	5
Reverse impact (160ip)	Pass	Pass	Pass	Pass	Pass	Pass
* 0 = bad / 5 = good	all forr	nulations	applied	at 40 µm		

Decrease energy use

- Lower curing temperature to 320 °F or lower
 - Same properties as at 350/400 °F in 10-12 minutes

• (Dutdo	or	dur	rab	le
-----	-------	----	-----	-----	----

covestro

• Gloss and matt appearance

Formulations for low temperature cure (white pigmented)						
	S5-1	S5-2	S5-3	S5-4	S5-5	S5-6
Cure time (min)	10	10	10	10	10	10
Cure temperature (°F)	350	320	350	320	320	320
PCI flow (60 μm)	6	6	6	6	6	4
Gloss	96	96	94	94	96	37
Impact @ 60 inlbs.	pass	pass	pass	pass	cracks	cracks
Outdoor (yrs Florida)	n.a.	n.a.	1	1	3	3
Pencil hardness	2B	2B	n.d.	n.d.	n.d.	n.d.
QUV-B (hrs)	n.d.	n.d.	400	403	n.d.	n.d.

Cure time (min)

PCI flow (60 µm)

Impact @ 60 in.-lbs.

Cure temperature (°F)

Formulations for e.g. heavy mass application (50/50 hybrid)

S4-1

10

260

2

pass

S4-2

30

270

3

pass

S4-3

30

270

3+

pass

Faster curing

5-1	Standard HAA formulation (General Industrial)
5-2	Low temp HAA formulation (General Industrial)
5-3	Standard HAA formulation (Architectural)
5-4	Low temp HAA formulation (Architectural)
5-5	Low temp HAA formulation (Super durable)
5-6	50/50 dry blend of 97/3 and 92/8 HAA formulations

Decrease energy use

- Decrease cure time up to 50%
 - Same properties as at 350/375 °F in 10/12 minutes

• Gloss and matt appearance

Formulation	S6-1	S6-2	S6-2
Cure time (min)	10	5	2
Cure temperature (°F)	350	350	480
Appearance	OK	OK	ОК
PCI flow (60 μm)	5	5	5
Gloss	94	94	94
Impact @ 60 inlbs.	pass	pass	pass
ADR	>100	>100	>100
Adhesion	5B	5B	5B

S6-1	Reference formulation
S6-2	Fast bake formulation

Formulation	S7-1	S7-2
Cure time (min)	12	5
Cure temperature (°F)	375	375
Appearance	OK	OK
Gloss	39	36
Colour L*	96	97
Colour a*	-1,2	-1,0
Colour b*	1,2	0,8
Impact @ 60 inlbs.	pass	pass
ADR	>100	>100

S7-1	Reference DBM formulation
S7-2	Fast bake DBM formulation

Enable use of powder coatings on non-standard substrates

 Use more sustainable coating technologies (with lower CFP) to coat non-standard substrates for powder coatings

	2K waterborne acrylic	Solventborne	Waterborne UV	ultra low cure powder coating	2-layer hybrid powder coating
Appearance	Smooth or texture	Smooth or texture	Smooth or texture	Smooth or texture	Texture
Chemical resistance	+/-	++	++	++	++
Nail scratch resistance			3	+/-	+/-
Humidity/ moisture resistance	-+	-+	-+	**	**
Process efficency		-	+/-	**	+
Carbon footprint kg eq/m² coated substrate	3.1	4.7	1.7	1,0	1.5

Enable use of powder coatings on non-standard substrates

- Apply other application technique to decrease overall CFP and provide sustainable coating solution
 - Decrease powder coating cure time (3-5 times faster)

Reduce emissions and (potential) harmful components

- Develop powder based solutions for current non powder based application (e.g. coil, heavy mass, wood)
 - Replace TMA containing resins/formulations for less harmful and/or biobased alternatives
 - Sn free or organo Sn free catalysis for polyester resins

covestro

 Introduce resins and formulations to replace epoxy based/functional crosslinkers
 Epoxy free alternative

Reference epoxy based

Standard industrial HAA

Renewable / recycled raw materials

- Reduce carbon footprint of polyester resins
 - 1. Use recycled feedstock (e.g. rPET)
 - 2. Use mass balanced raw materials
 - 3. Use biobased raw materials

- Mass balanced raw materials
 - CFP reduction with <u>no</u> impact on coating properties

Renewable / recycled raw materials Example of using bio-based raw materials

- Gloss and matte appearance
- Reduce CFP (with 0.12 kgCO₂e/kg) @ 32% bio-based content (C14)
 - up to 46% attainable
- ✓ Biobased raw materials
 ✓ Reduce harmful components
 ✓ Good coating properties

White pigmented 50/50 hybrid powder coating formulations							
	Glossy		Matt				
Refence resin	Х		Х				
(partly) bio-based resin		Х		Х			
Formulations cured for 10' @ 350 °F							
Appearance (60 μm)	ok	ok	ok	ok			
PCI flow (60 μm)	5	6	smooth	smooth			
Gloss 20°	93	92	7	4			
Gloss 60°	99	98	33	24			
Color b*	0.5	0,6	0.4	0,6			
Impact @ 160 inlbs.	pass	pass	cracks	cracks			
Boiling water resistance 2 hrs.	good	good	n.d.	n.d.			
Boiling water resistance 8 hrs.	good	good	n.d.	n.d.			
Adhesion	5B	5B	5B	5B			
Staining resistance	good	good	good	good			
Salt spray 480 hrs. (NSS)	1.4 mm	1.4 mm	n.d.	n.d.			
Powder stability (4wks/40°C)	8	6	6	6			

- Basic properties do not change for hybrid and HAA formulations
 Some effect on color/yellowing
- Outdoor durability decrease for non EG containing resins
 ➢rPET cannot be used for all resins

Concluding remarks

- Sustainable powder coating solutions is not only about introducing bio-based raw materials
- Providing extended or improved protection of the coated object has a significant impact
 - Considering not only the CFP of the coating, but also of replace/(re-)create the coated object (perform LCA for full object)
- No one size fits all solution for a sustainable coating
- Start taking first steps for a sustainable coating future together

Thank you for your attention

Jan Pieter Drijfhout R&D Manager Applied Polycondensates janpieter.drijfhout@covestro.com +31 6 1516 3809

