

- Study: Processing & properties of powder coatings with hard mineral additives
- Results of study

1909

1st Generation

Founding of Westerwerke by Jean Wester. Production of refractory products.

1961 2nd Generation

Founding of Wester Tonbergbau in Alfter-Witterschlick (clay mine) by Hanns Wester.

1975

3rd Generation

Foundation of *Wester Mineralien GmbH* by Harald Wester & Arndt Wester. Trade of <u>refractory</u> <u>products from clay with the addition of corundum</u>. <u>Processing & recycling of corundum</u> for different <u>abrasive industries</u>.

1980

Closure of the clay mine. Specialization in <u>production & trade of minerals</u> at Alfter-Witterschlick site.

1909

1st Generation

Founding of *Westerwerke* by Jean Wester. Production of <u>refractory products</u>.

1961 2nd Generation

Founding of *Wester Tonbergbau* in <u>Alfter-Witterschlick</u> (clay mine) by Hanns Wester.

1975 3rd Generation

Foundation of *Wester Mineralien GmbH* by Harald Wester & Arndt Wester. Trade of <u>refractory</u> <u>products from clay with the addition of corundum</u>. <u>Processing & recycling of corundum</u> for different <u>abrasive industries</u>.

1980

Closure of the clay mine. Specialization in <u>production & trade of minerals</u> at Alfter-Witterschlick site.

Since 2005

Production/refinement: <u>high-quality, chemically coated white fused alumina for the laminate &</u> <u>furniture industry</u>. <u>Quality management</u>: All products analyzed in our own laboratories.

2015

4th Generation

Nicola Wester & Max Wester become shareholders of Wester Mineralien GmbH.

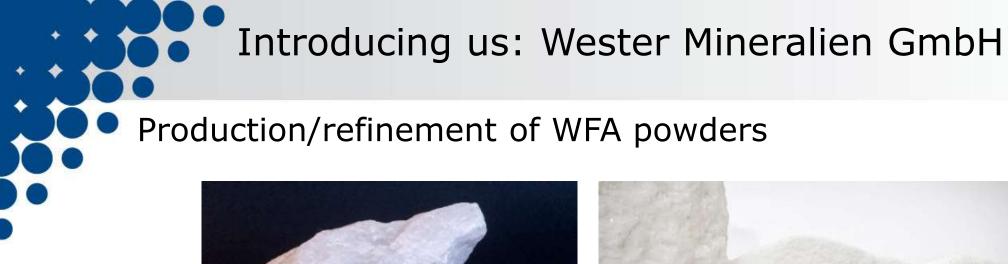
Since 2005

Production/refinement: <u>high-quality, chemically coated white fused alumina for the laminate &</u> <u>furniture industry</u>. <u>Quality management</u>: All products analyzed in our own laboratories.

2015

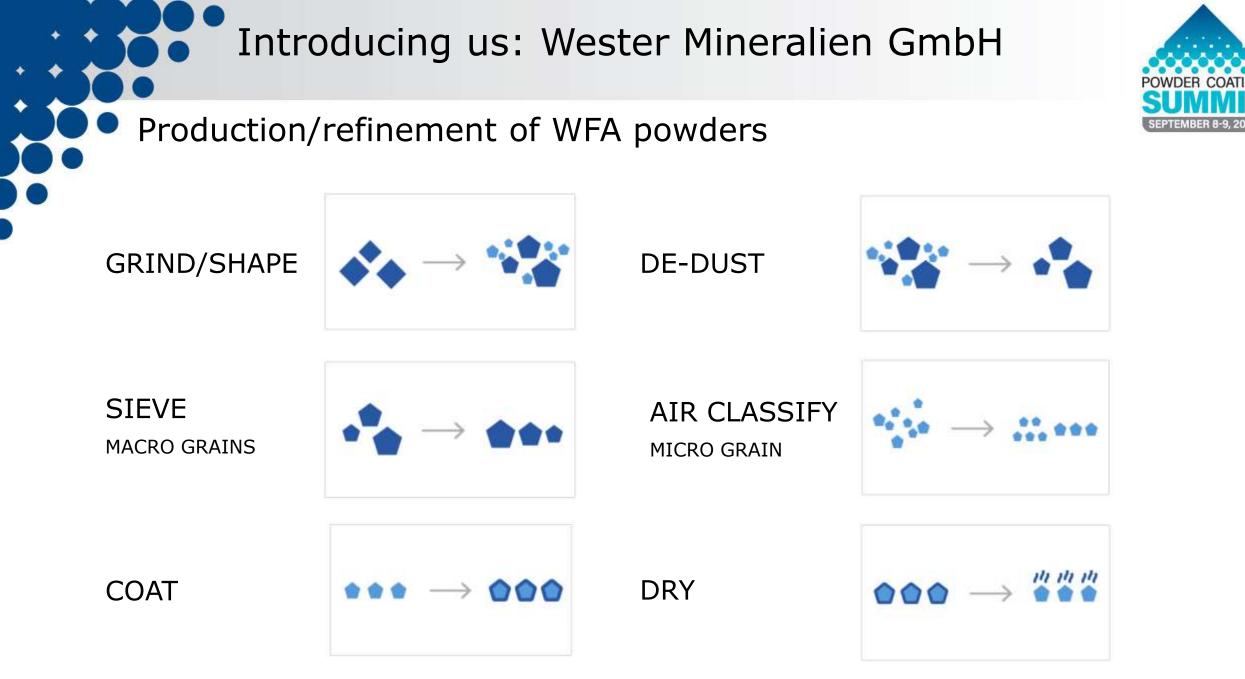
4th Generation

Nicola Wester & Max Wester become shareholders of Wester Mineralien GmbH.


Since 2015

Establishment of in-house <u>R&D department in cooperation with sales team & laboratory team</u>.

<u>Quality increase</u> through product development. <u>Research on minerals in different coating</u> <u>systems</u> & other applications.



Decades of experience with corundum

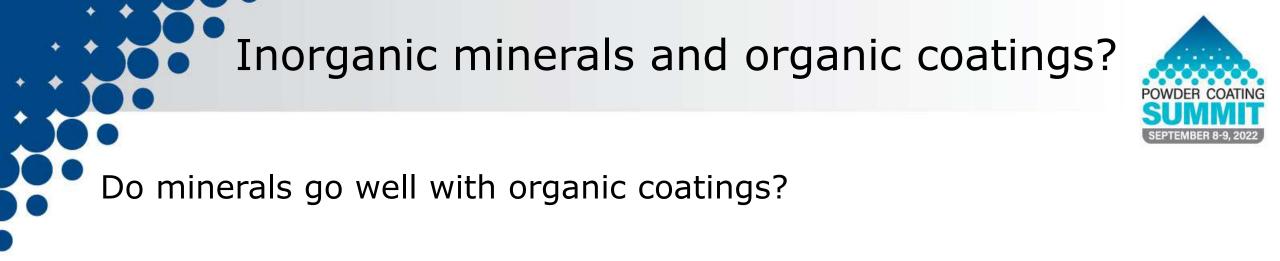
Experts in different materials

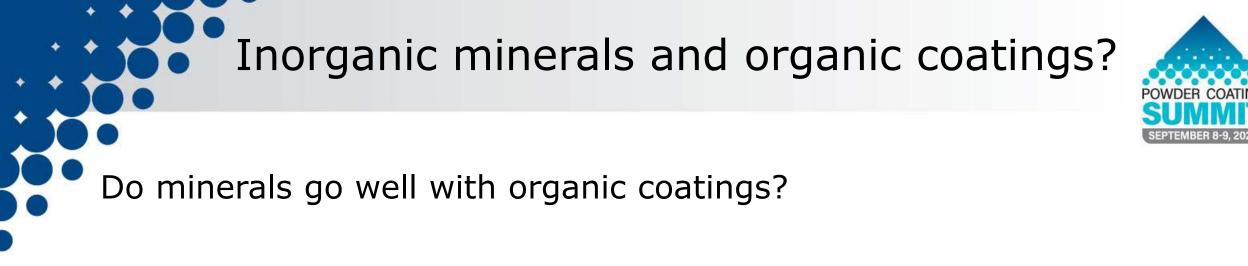
Production/refinement

Contract processing

Trading

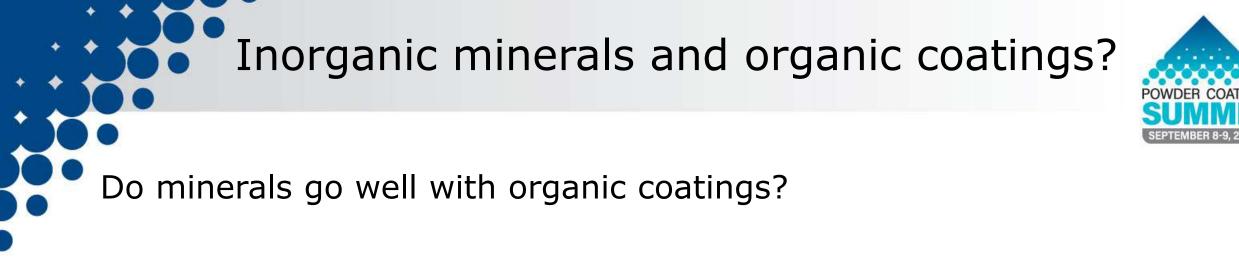
27 high-performance systems


60 employees


10,000 tons per year / 50 tons per day

Grain sizes 1- to 3-digit μm

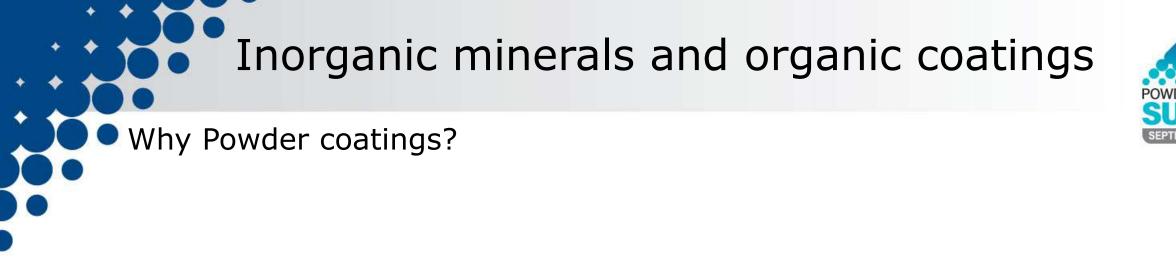
Well equipped laboratories



Yes!

White fused alumina (WFA) = State-of-the-art in clear melamine coats for abrasion & scratch resistance

Transparency of finishes not affected due to properties of chemically treated WFA


Yes!

Motivation

Abrasion & scratch resistance in coatings of all kinds for long lasting surfaces

Idea

Transfer know-how to powder coatings

Inorganic minerals and organic coatings

Why Powder coatings?

Economic & ecologic advantages compared to other coatings

 \rightarrow Strong demand: Expanding share of industrial coatings market

Inorganic minerals and organic coatings

Why Powder coatings?

Economic & ecologic advantages compared to other coatings

 \rightarrow Strong demand: Expanding share of industrial coatings market

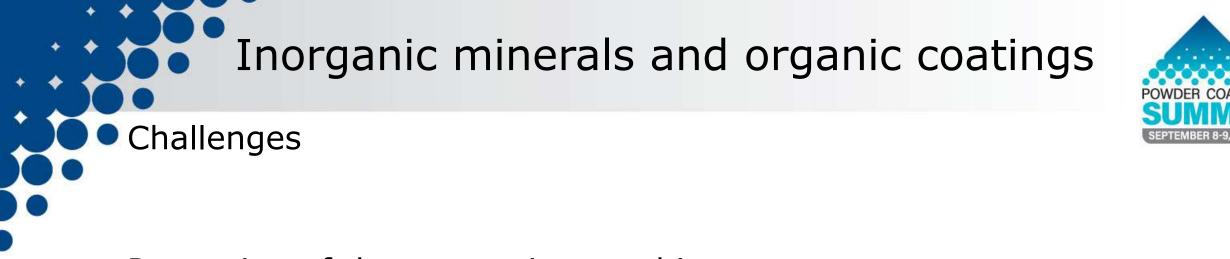
Improvement of formulations

 \rightarrow Increasing requirements to performance & life span

Inorganic minerals and organic coatings

Why Powder coatings?

Economic & ecologic advantages compared to other coatings


 \rightarrow Strong demand: Expanding share of industrial coatings market

Improvement of formulations

 \rightarrow Increasing requirements to performance & life span

Mineral powders integrable into existing process

 \rightarrow Same state of aggregation (bulk goods)

Protection of the processing machines

Application

Functionality of final surface layer

Optic of final surface layer

 \rightarrow Depending on field of use: Aesthetic expectations of customers

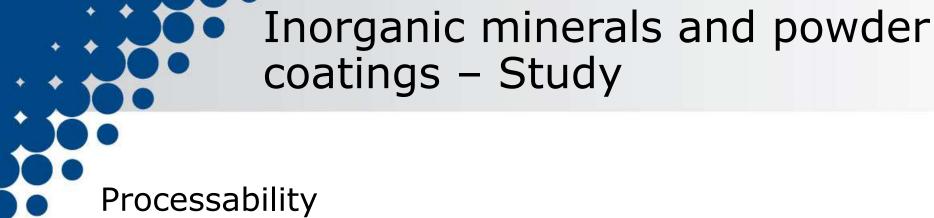
 \rightarrow Goal: Perfect balance between appearance & functionality

Inorganic minerals and powder coatings – Developer's approach

Positive effects of hard minerals in powder coatings: Data needed!

Study

Cooperation project with experts of Powder Coating Group (ChemQuest)


Gray standard durable powder coating, based on polyester-HAA (Hydroxy-Alkyl Amide) chemistry

Different fillers compared to unmodified control formulation

- \rightarrow Nepheline Syenite (d₅₀ = 7,5 µm)
- \rightarrow WFA F 500 (d_{50} = 12,8 $\mu m)$
- \rightarrow WFA F 800 (d_{50} = 6,5 $\mu m)$
- \rightarrow SiC F 500 (d_{50} = 12,8 $\mu m)$

Each tested 5 Vol% & 10 Vol%



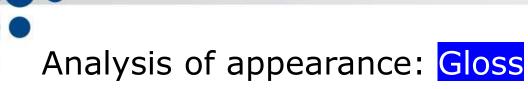
Application performance

Appearance (color, gloss & surface profile)

Mechanical properties

Abrasion resistance

 \rightarrow No issues caused by fillers


Gloss (60°) Formula Modification (Vol %) 95,1 1 None 2 5% Nepheline Syenite 69,5 10% Nepheline Syenite 3 55,3 5% WFA F 500 69,6 4 10% WFA F 500 48,5 5 6 5% WFA F 800 72,4 7 10% WFA F 800 57,8 5% SiC F 500 67,1 8 9 10% SiC F 500 47,3

Reduced with addition of ALL fillers

Reduction similar: WFA F 500/SiC F 500 (12,8 µm) & Nepheline Syenite (7,5 µm)

WFA F 800 (6,5 μ m) reduces gloss slightly less

Average of multiple measurements in various locations across the surface at 60° angle

25

Inorganic minerals and powder coatings – Study

Gloss (60°) Formula Modification (Vol %) 95,1 1 None 2 5% Nepheline Syenite 69,5 10% Nepheline Syenite 3 55,3 5% WFA F 500 69,6 4 10% WFA F 500 48,5 5 6 5% WFA F 800 72,4 7 10% WFA F 800 57,8 5% SiC F 500 67,1 8 9 10% SiC F 500 47,3

Analysis of appearance: Gloss

Average of multiple measurements in various locations across the surface at 60° angle

Reduced with addition of ALL fillers

Reduction similar: WFA F 500/SiC F 500 (12,8 µm) & Nepheline Syenite (7,5 µm)

WFA F 800 (6,5 µm) reduces gloss slightly less

Analysis of appearance: Color

Formula	Modification (Vol %)	L*
1	None	61,75
2	5% Nepheline Syenite	61,08
3	10% Nepheline Syenite	60,42
4	5% WFA F 500	59,78
5	10% WFA F 500	58,81
6	5% WFA F 800	59,32
7	10% WFA F 800	58,62
8	5% SiC F 500	58,29
9	10% SiC F 500	56,83

ALL samples mainly darker (lower "L")	
)	Higher concentration of filler = Greater shift
	SiC F 500: Significant shift
	WFA F 500 & WFA F 800: Moderate shift

Analysis of appearance: Color

Formula	Modification (Vol %)	L*
1	None	61,75
2	5% Nepheline Syenite	61,08
3	10% Nepheline Syenite	60,42
4	5% WFA F 500	59,78
5	10% WFA F 500	58,81
6	5% WFA F 800	59,32
7	10% WFA F 800	58,62
8	5% SiC F 500	58,29
9	10% SiC F 500	56,83

L*ALL samples mainly darker (lower "L")61,75Higher concentration of filler = Greater shift60,42SiC F 500: Significant shift59,32WFA F 500 & WFA F 800: Moderate shift

Analysis of appearance: Surface profile

Formula	Modification (Vol %)	PCI Smoothness
1	None	4
2	5% Nepheline Syenite	4
3	10% Nepheline Syenite	4
4	5% WFA F 500	4
5	10% WFA F 500	3
6	5% WFA F 800	4
7	10% WFA F 800	4
8	5% SiC F 500	4
9	10% SiC F 500	3

1 = most texture to 10 = smoothest

5% of ALL fillers: NO EFFECT on smoothness

10% of either WFA F 500 or SiC F 500: Slight increase in texture

PCI smoothness standards: Subjective visual scale

Analysis of appearance: Surface profile

Formula	Modification (Vol %)	PCI Smoothness
1	None	4
2	5% Nepheline Syenite	4
3	10% Nepheline Syenite	4
4	5% WFA F 500	4
5	10% WFA F 500	3
6	5% WFA F 800	4
7	10% WFA F 800	4
8	5% SiC F 500	4
9	10% SiC F 500	3

1 = most texture to 10 = smoothest

5% of ALL fillers: NO EFFECT on smoothness

10% of either WFA F 500 or SiC F 500: Slight increase in texture

PCI smoothness standards: Subjective visual scale

Analysis of appearance: Surface profile

Formula	Modification (Vol %)	PCI Smoothness
1	None	4
2	5% Nepheline Syenite	4
3	10% Nepheline Syenite	4
4	5% WFA F 500	4
5	10% WFA F 500	3
6	5% WFA F 800	4
7	10% WFA F 800	4
8	5% SiC F 500	4
9	10% SiC F 500	3

1 = most texture to 10 = smoothest

5% of ALL fillers: NO EFFECT on smoothness

10% of either WFA F 500 or SiC F 500: Slight increase in texture

PCI smoothness standards: Subjective visual scale

Analysis of mechanical properties: Melt viscosity

Formula	Modification (Vol %)	Pellet Flow (mm)
1	None	75
2	5% Nepheline Syenite	70
3	10% Nepheline Syenite	62
4	5% WFA F 500	70
5	10% WFA F 500	65
6	5% WFA F 800	70
7	10% WFA F 800	67
8	5% SiC F 500	70
9	10% SiC F 500	63

Shorter pellet flow = Higher melt viscosity <u>Melt viscosity increased with addition of ALL</u> <u>fillers</u>

No difference between WFA/SIC & Nepheline Syenite

Syenite

Analysis of mechanical properties: Melt viscosity

Formula	Modification (Vol %)	Pellet Flow (mm)	
1	None	75	
2	5% Nepheline Syenite	70	
3	10% Nepheline Syenite	62	
4	5% WFA F 500	70	
5	10% WFA F 500	65	
6	5% WFA F 800	70	
7	10% WFA F 800	67	
8	5% SiC F 500	70	
9	10% SiC F 500	63	

Shorter pellet flow = Higher melt viscosity
<u>Melt viscosity increased with addition of ALL fillers</u>
No difference between WFA/SIC & Nepheline

Analysis of mechanical properties: Melt viscosity

Modification (Vol %)	Pellet Flow (mm)	
None	75	
5% Nepheline Syenite	70	
10% Nepheline Syenite	62	
5% WFA F 500	70	
10% WFA F 500	65	
5% WFA F 800	70	
10% WFA F 800	67	
5% SiC F 500	70	
10% SiC F 500	63	
	None 5% Nepheline Syenite 10% Nepheline Syenite 5% WFA F 500 10% WFA F 500 5% WFA F 800 10% WFA F 800 5% SiC F 500	

Shorter pellet flow = Higher melt viscosity <u>Melt viscosity increased with addition of ALL</u> <u>fillers</u>

No difference between WFA/SIC & Nepheline Syenite

Analysis of mechanical properties: Impact resistance

		Impact (in-lbs)	
Formula	Modification (Vol %)	Direct	Reverse
1	None	20	20
2	5% Nepheline Syenite	20	20
3	10% Nepheline Syenite	20	20
4	5% WFA F 500	20	20
5	10% WFA F 500	20	20
6	5% WFA F 800	20	20
7	10% WFA F 800	20	20
8	5% SiC F 500	20	20
9	10% SiC F 500	40	40

Rapid deformation

Direct impact (film surface) & reverse impact (uncoated side behind the film)

Impact resistance generally unaffected by addition of ALL fillers

Gardner impact tester - Impact resistance in inch-pounds of force

Analysis of mechanical properties: Impact resistance

		Impac	t (in-lbs)
Formula	Modification (Vol %)	Direct	Reverse
1	None	20	20
2	5% Nepheline Syenite	20	20
3	10% Nepheline Syenite	20	20
4	5% WFA F 500	20	20
5	10% WFA F 500	20	20
6	5% WFA F 800	20	20
7	10% WFA F 800	20	20
8	5% SiC F 500	20	20
9	10% SiC F 500	40	40

Rapid deformation

Direct impact (film surface) & reverse impact (uncoated side behind the film)

Impact resistance generally unaffected by addition of ALL fillers

Gardner impact tester - Impact resistance in inch-pounds of force

Analysis of abrasion resistance

s (g)
>
>
>
>

Addition of ALL fillers: Significant improvement in abrasion resistance

WFA F 800 (6,5 μ m) & Nepheline Syenite (7,5 μ m) provide improvements

Best performance with addition of SiC F 500 followed closely by WFA F 500 (12,8 $\mu m)$

Taber Abrasion Test Method

POWDER COATING SEPTEMBER 8-9, 2022

Inorganic minerals and powder coatings – Study

Analysis of abrasion resistance

		500 Cycles	1000 Cycles
Sample	Modification (Vol%)	Coating Loss (g)	Coating Loss (g)
1	None	0,011	0,026
2	5% Nepheline Syenite	0,007	0,017
3	10% Nepheline Syenite	0,008	0,018
4	5% WFA F 500	0,005	0,010
5	10% WFA F 500	0,003	0,008
6	5% WFA F 800	0,007	0,015
7	10% WFA F 800	0,005	0,011
8	5% SiC F 500	0,002	0,005
9	10% SiC F 500	0,002	0,004

Addition of ALL fillers: Significant improvement in abrasion resistance

WFA F 800 (6,5 μ m) & Nepheline Syenite (7,5 μ m) provide improvements

Best performance with addition of SiC F 500 followed closely by WFA F 500 (12,8 $\mu m)$

Taber Abrasion Test Method

Analysis of abrasion resistance

		1000 Cycles
Sample	Modification (Vol%)	Coating Loss %
1	None	-100
2	5% Nepheline Syenite	-65
3	10% Nepheline Syenite	-69
4	5% WFA F 500	-38
5	10% WFA F 500	-31
6	5% WFA F 800	-58
7	10% WFA F 800	-42
8	5% SiC F 500	-19
9	10% SiC F 500	-15

Addition of ALL fillers: Significant improvement in abrasion resistance

WFA F 800 (6,5 μ m) & Nepheline Syenite (7,5 μ m) provide improvements

Best performance with addition of SiC F 500 followed closely by WFA F 500 (12,8 $\mu m)$

Taber Abrasion Test Method

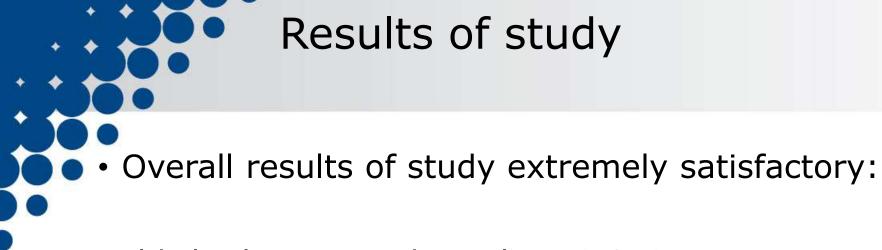
• Worries about processibility could be taken away

Results of study

- Successful transfer from experienced fields to powder coatings
- Small compromises in optical properties

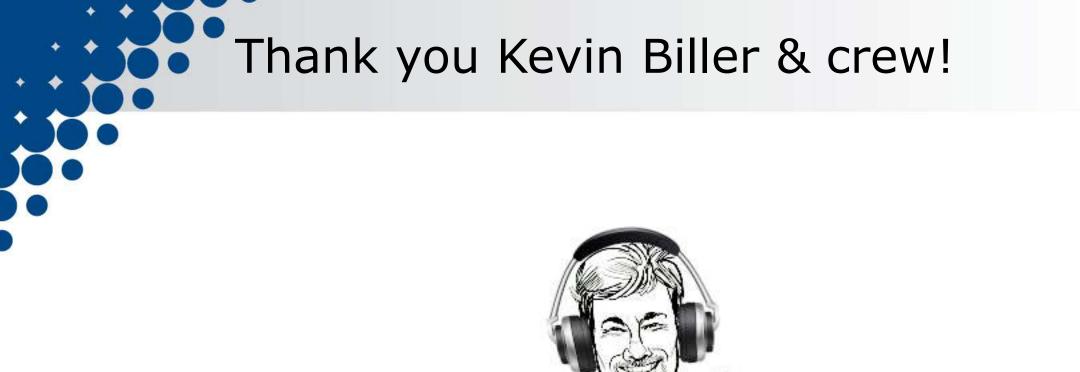
• Overall results of study extremely satisfactory:

Results of study


Abrasion resistance up to 6,5x compared to coating w/o filler

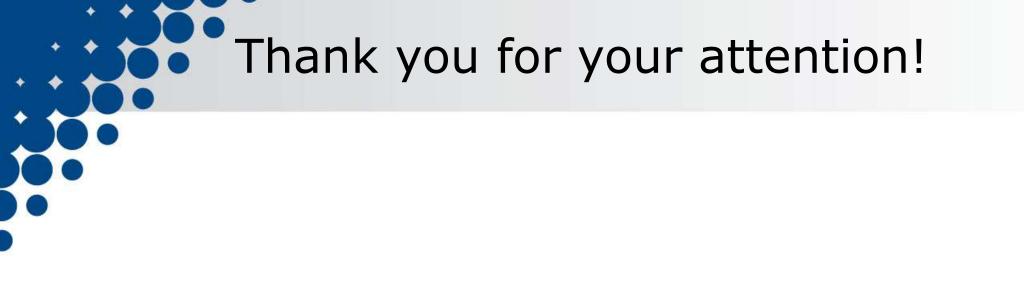
Abrasion resistance up to **4,5x**^{*} compared to coating with Nepheline Syenite

 \rightarrow Economically & ecologically rational


*correlates with price difference

Published in Journals in the US & Great Britain

THE


ASK J

Picture source: http://askjoepowder.com/

 $\mathbf{\bullet}$

POWDCAST

Questions?

www.wester-mineralien.de

43