Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!
Nanotechnology in Coatings

New Understanding of Oobleck-Like Fluids Contributes to Smart Material Design

By Sarah C.P. Williams
New Understanding of Oobleck-Like Fluids Contributes to Smart Material Design

rajatk, Creatas Video+ / Getty Images Plus, via Getty Images

March 7, 2024

If you mix cornstarch and water in the right proportions, you get something that seems not-quite liquid but also not-quite solid. Oobleck flows and settles like a liquid when untouched, but stiffens when you try to pick it up or stir it with a spoon. The properties of oobleck and other non-Newtonian fluids, including silly putty, quicksand, paint, and yogurt, change under stress or pressure, and scientists have long struggled to prove exactly why.

Now, researchers in the University of Chicago’s Physical Sciences Division (PSD) and Pritzker School of Molecular Engineering (PME) have used piezoelectric nanoparticles, which themselves change in response to pressure, to investigate the fundamental physics of non-Newtonian fluids. The team discovered a key role for friction between particles in causing the materials to flip from a fluid to a more solid structure.

“This not only answers long-standing basic questions about the physical origins of these materials, but opens up doors for the design of new non-Newtonian fluids with practical applications,” said Stuart Rowan, the Barry L. MacLean Professor of Molecular Engineering in PME and the Chemistry Department, and co-senior author of the paper, published in Proceedings of the National Academy of Sciences.

Among those potential applications: paint that doesn’t clump, liquids that harden into a mold when shaken, and wearable protective gear that stiffens when hit. 


Piezoelectric Probes

A hallmark of non-Newtonian fluids is that their viscosity (how thick they are) changes dramatically when the materials are under stress. For some materials, this means thinning with stress. Shaking a ketchup bottle can make the condiment drastically more pourable; yogurt, mayonnaise, and toothpaste maintain their shape in a container yet become more liquid-like upon use.

But other materials like oobleck, which is a concentrated particle suspension, behave just the opposite: it can feel solid while being manipulated yet collapse into a puddle when placed down.

Scientists have formulated hypotheses about why concentrated particle suspensions change when sheared, being exposed to multiple forces acting in different directions. These hypotheses mostly relate to how the molecules and particles that make up the materials can interact with each other in different ways under different conditions, but each hypothesis is hard to prove.

“To understand these concentrated particle suspensions, we want to be able to look at the nanoscale structure, but the particles are so incredibly crowded together that imaging these structures is very hard,” explained post-doctoral scholar Hojin Kim, the first author of the new paper.

To overcome this challenge, Kim collaborated with Rowan, Aaron Esser-Kahn, also a Professor in the PME and an expert in piezochemistry, and Heinrich Jaeger, the Sewell Avery Distinguished Service Professor of Physics and the James Franck Institute. The team developed a technique that measures the change in electrical conductance based on the shear force exerted upon it. Then, they suspended the nanoparticle in a liquid at such a concentration that it exhibited non-Newtonian properties in the same way as oobleck.

The researchers applied shear force to the top and bottom of the liquid and simultaneously measured the resulting changes to both viscosity and the electrical signals. That let them determine how the particles were interacting as they changed from a more liquid to more solid-like material.

“We found that friction between particles was critical to this transition,” said Kim. “In this concentrated particle solution, there is a tipping point when the friction reaches a certain level and the viscosity abruptly increases.”

As a dense suspension of piezoelectric nanoparticles shear thickens due to a transition from frictionless (gray) to frictional (red) particle–particle interactions, friction-induced piezoelectricity in the contacting particles generates electric charge, which in turn increases the ac conductance of the surrounding fluid.
FIGURE 1 » As a dense suspension of piezoelectric nanoparticles shear thickens due to a transition from frictionless (gray) to frictional (red) particle–particle interactions, friction-induced piezoelectricity in the contacting particles generates electric charge, which in turn increases the ac conductance of the surrounding fluid. (Figure courtesy of Kim et al.)

 

A Range of Applications

Understanding the physical forces at play in a concentrated particle solution is one step toward being able to design new non-Newtonian fluids in the lab. One day, these engineered materials could have customized properties that let scientists control their viscosity through stress. In some instances, this could translate to less clumping and clogging of liquids like paint and concrete. In other cases, it might mean a purposeful hardening of materials when desired.

“For any application, we hope we can eventually determine the ideal combination of solvents and particles and shear conditions to get the properties we want,” said Kim. “This paper might seem like very fundamental research but in reality, non-Newtonian fluids are everywhere and so this has a lot of applications.”

For now, the Pritzker Molecular Engineering and Physical Sciences Division researchers are planning to take advantage of the stress-induced piezoelectric activity of their nanoparticle suspensions to design new adaptive and responsive materials that, for example, become stiffer under mechanical force.

This article was also featured in University of Chicago’s Physical Sciences news on November 28, 2023, and was originally adapted from an article originally published by the Pritzker School of Molecular Engineering.

 

KEYWORDS: education Research and Development safety equipment Smart Coatings

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Sarah C.P. Williams, Freelance Science Writer; and the University of Chicago’s Pritzker School of Molecular Engineering

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Global Top 10 and PCI 25
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Paint and Coating Market Reports
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts



PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci voices from the top ebook

PCI webinar

Related Articles

  • IndustryNews-493850587.jpg

    Scientists Use Neural Networks to Rethink Material Design

    See More
  • IndustryNews-493850587.jpg

    Harvard Researchers Design Most Durable Anti-Fouling Material to Date

    See More
  • Journey to Sustainability blog

    Coatings 10 Years From Now Will Not be Like the Products of 10 Years Ago, or of Today. Why?

    See More

Related Products

See More Products
  • smart coatings.jpg

    Smart Coatings Fundamentals, Developments, and Applications

  • failiure-analysis-of-paints

    Failure Analysis of Paints and Coatings, Revised Edition

See More Products
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Manufacturing Division
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing