Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!
FT Archives

Modern CARCs for Military Protection

By John Mort
October 1, 2007
The coatings used on military hardware must resist increasingly sophisticated chemical and biological weapons. Moreover, they must also withstand the decontamination that typically involves a complete washdown with concentrated bleach and solvents. The chemical agent resistant coatings (CARC) system currently applied to virtually every tactical and combat vehicle in the U.S. Armed Forces is a vital component of the overall strategy of the U.S. Department of Defense (DOD) to protect soldiers from chemical and biological agent attacks. As the CARC system celebrates its 25th year in service, advances continue to be made to extend coating life, improve corrosion resistance, reduce environmental impact, enhance ease of use and make application processes more economical.



In the face of battle, today’s soldiers can never be too sure of what they might encounter. Warfare continues to become ever more sophisticated and dangerous. The chemical and biological weapons, or “agents of war,” that have been in use for hundreds of years have been refined over time into highly lethal and debilitating compounds. The coatings used on military hardware must resist these toxins. Moreover, they must also withstand the decontamination that typically involves a complete washdown with concentrated bleach and solvents.

The chemical agent resistant coatings (CARC) system currently applied to virtually every tactical and combat vehicle in the U.S. Armed Forces is a vital component of the overall strategy of the U.S. Department of Defense (DOD) to protect soldiers from chemical and biological agent attacks. The military coating system also provides visual and infrared camouflage, while keeping the vehicles operational by providing sustained corrosion protection. On July 14, 2007, CARC quietly celebrated somewhat of a milestone. On that date 25 years ago, the first approval for the most widely used U.S. Army coating system was issued by Department of the Army’s Mobility Equipment Research & Development Command located at Fort Belvoir, VA. Since that time, the system has evolved into the most technically advanced military vehicle coating system in the world.

Table 1.
(Editor's note: This table is the corrected version of the table that appeared in print.)

The Origins of CARC

CARC is a specification-driven coating system. The specification outlines every aspect of this military finishing process, including coatings, cleaning, pretreatment and application. The organic coating portion of the specification details the substrate-specific primers and topcoats (see Table 1).

The CARC system was originally developed to address three major coating-related challenges that were identified by the Army in the late ’70s: environmentally responsible corrosion control, chemical and biological agent decontamination, and camouflage through pigmentation and infrared reflectance to avoid detection. The primers and topcoats of the day that were primarily alkyd systems that did little to assist in achieving these goals.

In the late ’70s, the U.S. was in the process of enacting many laws that regulated the use of some heavy metals that were commonplace in the coatings industry. Two of these heavy metals, lead and chrome, were used extensively in the manufacture of primers and topcoats. The Army wanted to eliminate the use of these heavy metals in their coatings and implement new regulations as it developed the new coating systems. The mandate was issued to all manufacturers of military vehicles, including Oshkosh Truck. Oshkosh Truck enlisted one of its suppliers, Hentzen Coatings, to see if the company could make a product that met the corrosion control criteria while eliminating the heavy metals. The Hentzen lab had previously developed a product for commercial applications that met almost all of the new Army criteria. This product was slightly reformulated, and the resulting product - a two-component (2K), lead- and chrome-free epoxy primer - was eventually the basis for the MIL-P-53022 specification. Although there have been some upgrades in performance, the basic formulation for all of the MIL-P-53022 Type I primers is essentially the same today as it was back then.

Hentzen also formulated a 2K polyurethane topcoat that met the other goals of the Army’s coating team. The new system had very low light reflectance (less than 1.5% at 60 degrees), a defined infrared signature and, most importantly, the ability to be chemically and biologically decontaminated. The decontamination requirement grew out of the cold war and the practice of the Soviet Union stockpiling biological and chemical weapons. These weapons could potentially be used more effectively than conventional weapons on vehicles. The agents of war, as they are called, could render vehicles unusable by delivering a mist or aerosol of a toxic agent that would cover their exteriors. If this type of an attack occurred, the Army wanted to ensure the safety of the soldiers and allow the vehicle to be returned to service by the use of a decontamination process. The original decontaminating agent used at that time was very basic (high pH) and would deteriorate most coating systems. The new topcoat had to withstand the aggressive decontaminating agent without discoloring or losing adhesion. The Hentzen topcoat withstood the process and was eventually the basis for the first CARC topcoat specification, MIL-C-46168.

Visual Enhancements

The current color pallet for the CARC topcoats was defined in the release of MIL-C-53039. This was well after the approval of the first CARC topcoats. These colors were identified by the camouflage group within the Army as the best for numerous visual effects. Some matched certain non-specific terrains while others matched particular theaters of war. Many of the colors came from the meetings held by the NATO countries in an attempt to unify the colors of the vehicles used by the alliance. Some of the common names of the colors come from the dates during which these NATO meetings were held. For instance, the common green CARC paint, Fed Color Std 34094 Green, or “383 Green,” derives its name from the NATO group that met in March of 1983. The color “686 Tan” was presented to a NATO group that met in June of 1986. Ultimately, the unification project failed, and the U.S. was one of the few countries to adopt these colors.

Improved Formulations

By the early ’80s, the 2K CARC primer and topcoat had replaced almost all of the alkyd-based coatings at the major military contractors and OEMs. In early 1983, a formulator named Bhaskar Urs introduced a new single-component, moisture-cured CARC paint. This was one of many contributions Urs would make to the military coatings market while working independently and as the technical director at Hentzen Coatings for the past 20 years. The new single-component product eventually became the basis for the MIL-C-53039 specification. Although there were early technical hurdles to overcome, the coating’s ease of use made it a natural choice for the CARC paint community. This mil spec in its current form, MIL-DTL-53039, now accounts for more than 85% of all CARC topcoat usage.

In 1988, the MIL-P-53022 primer specification was changed to include a high-solids product. A Type II primer was formulated in response to tightening environmental regulations. The volatile organic compounds (VOCs) in the high-solids product is about half of the original, low-solids formulation.

Other specifications were added to the CARC system and identified in MIL-C-53072 for specific substrates or specific applications, such as MIL-C-22750 for interior topcoat applications and MIL-P-23377 for primer on non-ferrous substrates.

Environmental Changes

Many of the developments for new variants of military specification coatings over the last 20 years have been driven by environmental requirements and goals. As with all coatings, formulations have been adapted to accommodate decreasing VOC limits and reduced heavy metal content. The Army Research Lab addressed these issues by developing two new, water-dispersible specifications and canceling the original CARC topcoat. The specifications also were altered to include environmentally friendly types and classes to capture the changes that were being introduced by the military coating manufacturers.

Water-Dispersible CARC Primer and Topcoat. In 1999, ARL and a number of the existing CARC suppliers completed work on two water-dispersible coatings. A topcoat listed under MIL-DTL-64159 offered a lower VOC option. The specification had two types that were differentiated by the flattening agent: MIL-DTL-64159 Type II introduced a new polymeric bead flattening agent instead of the traditional silica. This bead gave the Type II better mar resistance and weathering properties. Another water-dispersible coating, a primer, was also developed and approved under MIL-P-53030. Although these coatings offer an environmental advantage, their slower cure, propensity to blister and multiple-component technology continues to make the transition from their solvent counterparts difficult.

Cancellation of MIL-C-46168.As the VOC regulations became more restrictive and technology improvements were made to other CARC topcoats, the MIL-C-46168 became expendable. The MIL-C-46168 was easy to spray due to its lower solids and rarely blistered, making it a consistent coating for applicators. But its poorer weathering in the field and higher VOC content made it an easy target for removal. In October of 2005, the Army Research Lab canceled the specification.

Exempt Solvents.As the water-dispersible coatings reduced the VOC content to 1.5 lb/gal, manufacturers of CARCs began to take notice of the exempt solvents. These solvents were deemed to be less reactive in the atmosphere, so their addition to a formulation did not count toward VOCs. Hentzen was the first to gain approval of a 1.5 VOC solvent CARC topcoat in 2000 that offered all of the advantages of the solvent systems without the high VOCs. In late 2005, the MIL-C-53039 was altered to MIL-DTL-53039 and included the Type II designation for the new low-VOC, hazardous air pollutants (HAPs)-free formulations.

Removal of Chrome.In addition to VOC changes, chrome also was targeted by the military specification. As mentioned previously, the original MIL-P-53022 primer was formulated to exclude chrome. In 2000, the MIL-PRF-23377 and the MIL-PRF-85582 non-ferrous primers added a “Class N” designation to allow qualified non-chrome products to be included under the specification. The category has had a number of very promising products qualify in recent years, although their acceptance in the marketplace has been slow. The chromated version of the MIL-PRF-23377 is a time-tested aerospace standard. Aerospace manufacturers and the DOD have not fully bought into the effectiveness of these Class N replacements, and with the price tag of a fighter jet or helicopter in the hundreds of millions of dollars, field testing can get very costly. Some field evaluations are in progress, but they are not likely to have any conclusive results in the near future.

The Polymeric Bead.The polymeric-flattened CARCs, which now include the MIL-DTL-64159 and the MIL-DTL-53039, are the future of the topcoat program. The improved mar resistance and excellent weathering properties give the “beaded” coating a performance advantage. While the vast majority of CARCs sold today are the silica-flattened, this type of CARC will go the way of the MIL-C-46168 over the next three to five years. The “beaded” MIL-DTL-53039 will make the transition to this type of technology seamless, as it poses no application, curing or processing hurdles to current single-component users.

Future Trends

There are no official estimates by the government on the size of the CARC market. The varied applications by OEMs, government installations and subcontractors make the number difficult to identify, but unofficial estimates range from $75 million to $250 million. Both the market and the products available within the CARC specifications have grown considerably over the past 20 years.

The most prominent and achievable goals for future CARC systems include extended life and improved corrosion resistance. Environmental aims such as lower or “zero” VOCs and the elimination of hexavalent chrome continue to be pursued. As always, enhanced ease of use and more economical processes remain in the sights of coating technologists. The use of QPL powder coatings within the CARC systems is close to becoming a reality. Other goals such as self-decontaminating coatings could eventually lead to the elimination of the decontamination process. The development of “stealthy” coatings for ground vehicles, which have the ability to destroy a heat image, have also been part of the CARC system discussion. All of these factors will ensure that the rate of change within the CARC system will continue at a relatively fast pace into the foreseeable future. These improvements will allow the CARC system to keep up with innovation, while continuing to fulfill its primary goal of protecting soldiers.

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

John Mort is the sales manager – CARC technology for Hentzen Coatings. He can be reached at jmort@hentzen.com or 414.353.4200.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Global Top 10 and PCI 25
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Global Top 10 and PCI 25
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts

pci academy

PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci case ebook

PCI webinar

Related Articles

  • A Meter-Mix Solution for 3K CARCs

    See More
  • MATERIALS: Waterborne CARCs

    See More
  • Sherwin-Williams Develops New Waterborne CARCs (9/13/06)

    See More

Related Products

See More Products
  • corrosion of linings.jpg

    Corrosion of Linings & Coatings: Cathodic and Inhibitor Protection and Corrosion Monitoring

  • intelligent.jpg

    Intelligent Coatings for Corrosion Control 1st Edition

  • adhesives.jpg

    Adhesives for Wood and Lignocellulosic Materials

See More Products
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Manufacturing Division
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing