Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!
Industrial CoatingsWaterborne CoatingsGreen TechnologyFinished Products

Corrosion-Resistant Nanocomposite Coating for Metal Structures

By Dr. Jiong Liu, Dr. Robert Lezzi
pci0912-NEI-F1-615.jpg
Credit: NEI Corporation
pci0912-NEI-F2-615.jpg
Credit: NEI Corporation
pci0912-NEI-F3-615.jpg
Credit: NEI Corporation
pci0912-NEI-F4-615.jpg
Credit: NEI Corporation
pci0912-NEI-F5-615.jpg
Credit: NEI Corporation
pci0912-NEI-F6-615.jpg
Credit: NEI Corporation
pci0912-NEI-F7-615.jpg
pci0912-NEI-F8-615.jpg
Credit: NEI Corporation
pci0912-NEI-F9-615.jpg
Credit: NEI Corporation
pci0912-NEI-F1-615.jpg
pci0912-NEI-F2-615.jpg
pci0912-NEI-F3-615.jpg
pci0912-NEI-F4-615.jpg
pci0912-NEI-F5-615.jpg
pci0912-NEI-F6-615.jpg
pci0912-NEI-F7-615.jpg
pci0912-NEI-F8-615.jpg
pci0912-NEI-F9-615.jpg
September 4, 2012
Grit blasting of metal surfaces, a routine surface preparation technique prior to painting, is expensive, labor-intensive, time-consuming, and generates a large amount of hazardous, powdery waste. A less-hazardous and lower-cost alternative surface preparation technique that can ensure long service life by providing good adhesion to the substrate is highly desirable. To that end, NEI Corporation has developed a proprietary nanocomposite pretreatment coating called Nanomyte® PT-20, which is designed to:

•   Improve the adhesion and corrosion resistance of paint systems on steel, aluminum and other metal substrates;

•   Reduce the required level of grit blasting from SSPC (Steel Structures Painting Council) SP-10 (near white blast cleaning = at least 95% of the surface free of visible residues) to nominally SP-6 (commercial blast cleaning = at least 65% of the surface free of visible residues) or SP-3 (power tool cleaning, which only removes loose mill scale, rust and old paint).

The environmentally friendly waterborne nanocomposite pretreatment promotes adhesion between the paint layer and the metal by acting as a double-sided bonding agent. This article discusses the pretreatment concept, laboratory and outdoor exposure test results of the pretreatment, and scale-up of the nanocomposite pretreatment with a major U.S. shipbuilder.

Technology Overview

Under a Navy-sponsored Small Business Innovation Research Contract, NEI developed a chromium-free nanocomposite pretreatment coating for steel, aluminum and other metals. As an example, the current Navy practice for blasting and painting steel ships is shown in Figure 1, along with the proposed approach. The current Navy practice involves grit blasting the steel to a SSPC SP-10 level of cleanliness. This level of grit blasting is very time consuming, costly and is an environmental issue because it generates huge volumes of hazardous waste due to the large amount of metal surface removed in producing a metal surface profile of 2-3 mils. After blasting, two coats of primer are usually applied at a total thickness of 8-12 mils, followed by a 2-4 mils-thick topcoat. The technology developed by NEI is a thin (~0.5-2.0 micron thickness) nanocomposite pretreatment that acts as a double-sided bonding agent. Because of the excellent adhesion of the pretreatment to both the metal substrate and primer, the level of grit blasting can be reduced from SP-10 to SP-6, or even SP-3 power tool cleaning in less-demanding applications. This reduced level of surface preparation results in a significant reduction in labor and hazardous waste, lowering overall costs. Also, due to the excellent adhesion and corrosion resistance resulting from the use of the nanocomposite pretreatment, the potential exists to reduce the thickness of the primer coat, lowering the total applied cost even more.

 It should be emphasized that the nanocomposite pretreatment is extremely environmentally friendly in that it is waterborne, dries at ambient conditions (i.e., requires no elevated temperature curing), contains no chromium or other carcinogens, no solvents (therefore no VOCs), no heavy metals, and no HAPs. Also, the pretreatment was formulated so that it is easy to apply to various metal surfaces using conventional painting equipment.

Test Results

Initial Laboratory Formulations

The initial laboratory work focused on developing a viable air-dry waterborne formulation that would provide excellent adhesion and corrosion resistance on steel that was grit blasted to a lower level of grit blasting cleanliness than SP-10 (i.e., SP-6 or SP-3). After designing and testing dozens of formulations, the nanocomposite pretreatment formulation discussed below was chosen.

Figure 2 shows 4-week salt spray results (ASTM B117) of steel panels that were either grit blasted to SP-10 without any pretreatment, or cleaned with a power tool to SP-3 level of cleanliness, followed by application of the nanocomposite pretreatment. All the panels were coated with an ultrahigh-solids epoxy primer (8 mils − MIL-PRF-23236C) and low-solar-absorbance silicone alkyd topcoat (2 mils − MIL-P-24635B). Figure 2 shows that the SP-10 control panel had 2.4 mm of scribe creep (i.e., paint delamination at the scribe area) compared to 1.5 mm for the SP-3 plus nanocomposite pretreatment. This is a significant result because the nanocomposite pretreatment with a much lower level of surface cleanliness (SP-3) had better salt spray results than SP-10.

 A cathodic disbondment test was also conducted. In this test, panels were coated with an ultrahigh-solids epoxy primer (8 mils − MIL-PRF-23236C). A topcoat was not used. A scribe was placed in the paint through to the steel substrate. The panels were then immersed in a 3.5% sodium chloride solution under -0.59 volt cathodic polarization for 24 h. The delaminated paint around the scribe was then lifted with a knife, and the size of the disbondment area was measured.

 Figure 3 shows that the SP-6 level of cleanliness in combination with the nanocomposite pretreatment had much less scribe creep than the SP-10 samples.

Shipyard Scale-Up 

Nanomyte PT-20 nanocomposite pretreatment for steel substrates was scaled-up at a major U.S. shipyard. In November 2010, NEI personnel conducted the first field trial of Nanomyte PT-20. In that trial, shipyard workers cleaned 62 steel panels (6” x 12” x 1/8” thick) by grit blasting or using a power tool. PT-20 was applied to some of the panels cleaned to SSPC SP-6 or SP-10. Some panels were “control” panels in that they were not treated with PT-20. Shipyard workers then applied two coats of a Navy-specified epoxy primer (MIL- PRF-23236D). Total dry film thickness was 8 mils; drying time between coats was about 18 h.

Prepared test panels were painted, scribed and placed on outdoor exposure at 45° facing south (according to ASTM D1014) about 30 yards from the salt water at the shipyard. The panels were put on exposure in January 2011 and evaluated at six-month intervals. In the July 2011 evaluation, there was no visible difference in any of the panels. Panels from this trial were also evaluated in various laboratory tests. The results are discussed below.

Laboratory Test Results 

Panels from the November 2010 shipyard trial were subjected to the following laboratory tests: salt spray (ASTM B117) and cathodic disbondment (MIL-PRF-23236D). Results of each test are discussed below.

The panels were subjected to salt spray testing (ASTM B117) for 28 days. Figure 4 shows that the SP-6 surface preparation plus NEI pretreatment had less scribe creep than the SP-10 control. These results are typical for multiple samples in the test series.

 The cathodic disbondment test was done per MIL-PRF-23236D and ASTM G8. Three ¼-inch holidays were drilled through the coating to the metal on each 6”x12” test panel to obtain results at 30, 60 and 90 days. The panels were placed in a plastic vessel and immersed in an electrolyte solution consisting of tap water and 1 wt% each of sodium chloride, sodium sulfate and sodium carbonate. The panels were electrically connected to a commercial magnesium anode. At the end of the test period, the test cell was disassembled, and the test panels were rinsed with warm tap water and wiped dry. The delaminated paint around the holidays was then lifted with a knife, and the size of the disbondment area was measured.

 Figure 5 shows that the cathodic disbondment resistance for the sample with SP-6 surface preparation plus Nanomyte PT-20 pretreatment is slightly better than that of SP-10 control. The results shown in Figure 5 are typical for multiple samples in the test series.

Prototype Parts Scale-Up

Based on the success of the November 2010 trial, Navy and shipyard personnel agreed to scale up the process to prototype parts. The scale-up trial took place in May 2011 at the same shipyard as the November 2010 trial. The parts chosen were a support angle and a connector bracket. Each part was about 15” x 15”. One of each part was grit blasted to SP-10 (control part) and the other was grit blasted to SP-6 onto which Nanomyte PT-20 was applied. All the parts were painted with two coats of epoxy primer (8 mils thick total − MIL- PRF-23236D) and one coat of a low-solar-absorbing silicone alkyd topcoat (2 mils thick − MIL-P-24635B). These two parts are shown in Figure 6 prior to grit blasting. Figure 7 shows the parts after they were grit blasted, painted and placed on outdoor exposure in June 2011.

 Figures 8 and 9 show the prototype parts after six months of outdoor exposure about 30 yards from salt water. The parts were placed at 45° facing south according to ASTM D1014. At this short exposure time, red rust can be clearly seen at the welds and edge areas of the controls (i.e., SP-10 only) without the NEI pretreatment. No red rust was seen at the same areas, or anywhere else on the test pieces with a SP-6 surface preparation followed by the Nanomyte PT-20 treatment. This result clearly demonstrates the benefits of using the Nanomyte PT-20 pretreatment.

Summary

NEI Corporation has developed a proprietary nanocomposite pretreatment coating designed to: (a) provide long service life by improving the adhesion and corrosion resistance of overlaying paint systems; and (b) reduce overall surface preparation and cost by lowering the required level of grit blasting from SSPC SP-10 to nominally SP-6 or SP-3. The thin (0.5 – 2.0 micron), environmentally friendly, air-dry, waterborne pretreatment promotes adhesion between the paint layer and the metal substrate by acting as a double-sided bonding agent. The NEI technology is applicable to steel, aluminum and other metal surfaces, and is easy to apply using conventional painting equipment.

The corrosion resistance benefits of the nanocomposite pretreatment were demonstrated in extensive laboratory corrosion and adhesion tests, and field trials at a shipyard. Samples from the scale-up trials are on long-term outdoor exposure near salt water. After only six months exposure time, the SP-6 blasted part plus Nanomyte PT-20 showed no red rust whatsoever. The SP-10 blasted part without PT-20 showed red rust at weld joints and edges.

 Even though the pretreatment was originally designed for painting structures that require grit blasting, the pretreatment will also be suitable for painting operations not requiring grit blasting, such as coil coating, dip coating and non-grit-blasted spray coating. 

Acknowledgment

NEI Corporation is grateful for the financial support provided by the NAVY SBIR program. The work presented in the paper was supported by Contract # N00024-08-C-4142.

KEYWORDS: Metal Coatings nanotechnology

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Dr. Liu is Senior Scientist for Coating Technologies, NEI Corporation in Somorset, NJ

Dr. Lezzi is Vice President, Coating Technologies for NEI Corporation in Somorset, NJ

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Global Top 10 and PCI 25
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Paint and Coating Market Reports
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts



PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci voices from the top ebook

PCI webinar

Related Articles

  • GREENKOTE: Corrosion-Resistant Poly-Metal Diffusion Coatings

    See More
  • Prepainted Metal with Graffiti-Resistant Coating Provides Industry-First Protection for School Building

    Prepainted Metal with Graffiti-Resistant Coating Provides Industry-First Protection for School Building

    See More
  • Finished Products

    A New Electrically Conductive Corrosion-Resistant Coating

    See More

Related Products

See More Products
  • polymer.jpg

    Polymer Nanocomposite Coatings

  • intelligent.jpg

    Intelligent Coatings for Corrosion Control 1st Edition

  • corrosion of linings.jpg

    Corrosion of Linings & Coatings: Cathodic and Inhibitor Protection and Corrosion Monitoring

See More Products

Events

View AllSubmit An Event
  • October 30, 2025

    Novel Spherical Calcium Silicate Anti-Corrosion Pigment for Protective Coatings

    ON DEMAND: This presentation introduces a novel spherical calcium silicate as an effective anti-corrosion pigment for protective coatings. The modified spherical silica was synthesized using a unique patented manufacturing process, allowing to produce AC pigments with increased effectiveness for passivation, as well as easier and more even dispersion.
View AllSubmit An Event

Related Directories

  • Schlenk Metallic Pigments

    SCHLENK supplies state-of-the-art metallic pigments, including solvent and waterborne aluminum and gold bronze pigments for all coatings and paint applications. In addition, we supply unique special effects like our Zenexo® ultra-thin colored aluminums that offer unmatched durable gold and orange effects. Our very broad Decomet® vacuum metallized pigment line allows formulators to achieve very smooth metal and chrome-like effects. SCHLENK products are available globally.
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Manufacturing Division
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing