Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!
Paint and Coatings AdditivesPaint and Coating PigmentsEU TodayArticles From Europe

Dispersant Technology for Red and Yellow Iron Oxides

A New Additive Technology for Waterborne Iron Oxide Pigment Concentrates

By Markus Vogel, Frank Kleinsteinberg, Nikolina Milanovic
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron

Figure 1

Dispersant Technology for Red and Yellow Iron

Figure 2

Dispersant Technology for Red and Yellow Iron

Figure 3

Dispersant Technology for Red and Yellow Iron

Figure 4

Dispersant Technology for Red and Yellow Iron

Figure 5

Dispersant Technology for Red and Yellow Iron

Figure 6

Dispersant Technology for Red and Yellow Iron

Figure 7

Dispersant Technology for Red and Yellow Iron

Figure 8

Dispersant Technology for Red and Yellow Iron

Figure 9

Dispersant Technology for Red and Yellow Iron

Figure 10

Dispersant Technology for Red and Yellow Iron

Table 1

Dispersant Technology for Red and Yellow Iron

Table 2

Dispersant Technology for Red and Yellow Iron

Table 3

Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
Dispersant Technology for Red and Yellow Iron
June 1, 2016

Pigment concentrates have always been a modern and flexible way to produce colored paints. Especially in waterborne applications, these concentrates have to be suitable for a broad range of different binder technologies. Because of that, the concentrate formulations are usually free of binders and offer a broad compatibility. Furthermore, the demands in terms of storage stability, color strength and cost efficiency are very high. These demands are addressed directly to the additive technology. The additive is expected to provide outstanding viscosity reduction in order to achieve high pigment loadings and the most economic grind. It has to stabilize the viscosity over long periods of time and has to develop maximum color strength to avoid underutilizing any expensive pigments. Iron oxides are the most important pigment class when it comes to decorative coatings. The difficulty in iron oxides lies in the shape and not the wetting of the pigment. Iron oxide yellow tends to give dilatant rheology, which can be a disaster when automatically dosing in a dispensing machine. On the other hand, iron oxide red tends to increase in viscosity over time in pigment concentrates.

This article explains the different structures of wetting and dispersing additives that could be used in waterborne, binder-free pigment concentrates for iron oxides. The stability and wetting of the pigment concentrates will be reflected by the viscosity reduction, storage stability and coloristic properties. The zeta potential is used for characterizing the wetting behavior and dispersing efficiency. Guidelines for formulating iron oxide pigments will be provided at the end.

Pigment Concentrate Technology

Pigment dispersion is the most important step in the process of producing a colored coating. For waterborne decorative coatings, a white base paint is typically produced by a direct grind, and the color is customized by using a pigment concentrate. These pigment concentrates are usually binder-free to offer better compatibility in a wide range of different base paints. Iron oxides are the second biggest group of pigments in decorative coatings, with the first being titanium dioxide. Large quantities of pigment concentrates are produced with iron oxide red and yellow. These are used for in-house tinting as well as in large tinting machines at the point of sale.

The target for production of iron oxide pigment concentrates is to achieve a maximum pigment loading to reduce the effort in production. The biggest challenge is to stabilize the pigment in the liquid phase and thereby achieve good long-term stability without settling. Pigment dispersion and stabilization are hardly possible without the addition of suitable wetting and dispersing additives. Iron oxides have a very high density, so achieving good stability at a high pigment loading is difficult. It is a tough job, but it is beneficial to have a low viscosity and free-flowing pigment concentrates.

Step One: Pigment Wetting

Pigment dispersion can be broken down into three consecutive steps: wetting, dispersion and stabilization. The first step of the dispersion process is wetting the pigments by a liquid. Proper wetting of pigments is essential for them to be evenly distributed in a liquid. Air trapped in the pigment must be removed and the pigment particle must be fully enclosed by the liquid medium.1 Described by the Young equation (Equation 1), for the pigment surface to be wetted by a liquid, the surface tension of the liquid must be lower than the surface energy of the pigment.1 A liquid with lower surface tension wets pigments better than one that has a high surface tension. Therefore, an additive that promotes wetting must mainly reduce the surface tension of the liquid.

Ys = Ysl + Yl • cosΘ

(1)

Step Two: Pigment Dispersion

Now that the pigment is wetted, the next step in the process is pigment dispersion. The target of the dispersing process is to achieve very small particle sizes with a large surface area. This leads to high color strength and good hiding power. The additive reduces Van-der-Waals interaction between pigment particles, and in return, this lowers the viscosity of the millbase.2 This allows for higher pigment loading to be reached.

In the dispersion process, the pigment agglomerates are broken down mechanically into primary particles and small aggregates. Energy is required to break up aggregates and agglomerates. To break up agglomerates and increase the surface area (dA), energy input (dW) is needed (Equation 2).1 This energy is proportional to the surface tension (Y). The smaller the surface tension, the greater the surface area will be for a certain amount of energy.2

dW = Y • dA

(2)

Step Three: Stabilization

The next step in the dispersion process is stabilizing the pigments. Stabilization of solid particles is the ability to keep all solid particles separated at a certain distance and stop agglomerates, aggregates and flocculates. Solid particles in liquid will move around and collide with each other according to Brownian motion. If these particles are not well stabilized they will re-agglomerate and flocculate back together. To achieve a good stabilization of the pigments, the wetting and dispersing additive has to adsorb on the surface of the pigment. Therefore, the additive has to have anchor groups with high affinity to the pigment surface. For iron oxide pigments, the additive should have affinity groups that are able to build hydrogen bonding or dipole-dipole forces with the surface of the pigment. The most suitable functional groups for a good adsorption on iron oxides are hydroxyl, carbonyl or carboxyl groups.

The stabilization of the pigments can be achieved by the following mechanisms (Figure 1):

  • Electrostatic stabilization;
  • Steric stabilization;
  • Electrosteric stabilization.

Electrostatic Stabilization and Zeta Potential

The most important stabilizing factor in waterborne formulations is electrostatic repulsion. The most ideal case is when the wetting and dispersing additive adsorbed onto the pigment surface dissociates into an anionic and cationic part. The cationic counter ions form a mobile diffuse cloud around the pigment particle, which leads to an electrostatic double layer.1 With a strong double layer, repulsion dominates and the dispersion is stable.

Electrostatic stabilization can be quantified by the zeta potential, z, which is a measure of the potential at a shear layer in a dispersion. The first adsorption layer with negative charges is generated by the wetting and dispersing additive, but not the whole charge of the pigment particle is compensated. A second layer with a diffuse charge distribution is built up predominantly with counter ions. Both layers represent the electrostatic double layer, known as the ion cloud.3

The zeta potential is measured because the surface potential cannot be directly determined. In this case, the migration speed of the particles in an electrical field is evaluated. When electrostatic charged particles move in an electrical field, they take a part of the ion cloud with them. The higher the distance of the ions to the pigment surface, the lower the interaction is with the pigment surface.3

The loosely bound diffuse layer shears off, and the potential at this shear plane is termed zeta potential. The higher the zeta potential, the better the stabilization of the pigments (Figure 2). As the zeta potential approaches zero, the tendency of the particles to agglomerate increases.

The zeta potential does not describe the steric stabilization, which is another vital mechanism in waterborne formulations. Steric stabilization is not achieved by ions and therefore potential cannot be measured.

Steric Stabilization

In contrast to electrostatic stabilization, polymeric side chains are necessary for steric stabilization. The side chains append themselves to the pigment surface and warrant adsorption of the additive. When the pigment particles come closer to each other, the polymeric side chains reduce mobility and lower entropy.

An essential factor in stabilization is the reduction of interactions between pigment particles that would otherwise cause flocculation (Figure 3). These interactions also restrict the movement of the particles and give rise to the viscosity. The better the stabilization, the lower the interactions and therefore the lower the viscosity.

Electrosteric Stabilization

Wetting and dispersing additives have complex demands, therefore it is sometimes useful to combine electrostatic and steric stabilization. This mechanism is known as electrosteric stabilization. Electrosteric additives have the ability to fulfill high demands for stabilization and durability.

Electrosteric additives prevent pigment particles from approaching each other by “controlled flocculation” (Figure 4). The molecules of the additive interact with each other and the pigment surface, forming a three-dimensional network.1 Floating of pigments is a result of different pigment mobility. With electrosteric stabilization, pigments bind to flocculates of the same color and prevent floating in the dispersion.

Results and Discussion

Typical formulations of waterborne binder-free pigment concentrates for iron oxide yellow and iron oxide red were used to prepare different pigment concentrates (Tables 1 and 2). Three different polyacrylate salts, one high polymeric additive and a new additive were tested.

Particle Size and Hiding Power

The hiding power of pigment particles determined by light scattering is related to the particle size. Inorganic pigments show a maximum in light scattering at a particle size half the wavelength of the scattered light (l/2) (Figure 5).

The prepared colorants were let down with a styrene acrylic emulsion. Drawdowns on black and white charts were prepared. The hiding power was determined by measuring the delta E value between the drawdowns over white and the drawdowns over black (Table 3). The lower the delta E value, the higher the hiding power. The particle size distribution was measured using dynamic light scattering (MicroWave by MicroTrack). With the new additive, the particle size of iron oxide yellow was close to the optimum (l/2). With this particle size, the highest hiding power could be achieved.

Viscosity and Stability

The viscosity of the pigment concentrates was measured 24 hrs after preparation (Figure 6). A cone plate rheometer was used for the measurement. Future work includes viscosity readings over two weeks in an oven at 50 °C.

The polyacrylate additives exhibited useful results with yellow iron oxide in the beginning. The polymeric additive and the new additive displayed a very strong viscosity reduction with the yellow oxide. More diverse results were found for the red iron oxide. Only one of the polyacrylate additives could achieve a processable viscosity. The polymeric and new additive achieved a much lower viscosity.

Zeta Potential

The zeta potential was measured in a 5% pigment slurry. The respective additive was titrated until a constant zeta potential was reached. The highest influence on the zeta potential could be seen with an additive addition up to 0.5% solid on pigment. The lowest zeta potential was achieved with polyacrylates, which reflects that the strongest stabilization is accomplished with electrostatic chemistry. As expected, the high polymeric additive had almost no influence on the zeta potential. This additive class does not provide any electrostatic stabilization. The new additive had a zeta potential in between the polyacrylates and the polymeric additive (Figures 7 and 8).

The zeta potential alone is not sufficient enough to interpret results obtained by viscosity and stability measurement completely. The zeta potential does not give information about the steric stabilization of the pigment particles. Providing that the steric stabilization contributes beneficially to the performance, the results can be interpreted as follows (Figures 9 and 10). To stabilize the iron oxide particles, a certain amount of stabilization energy is needed. In some cases, electrostatic energy cannot stabilize pigments on its own. Sometimes it is necessary to have additional steric stabilization as well.

Conclusion

The results show that the new additive performs on a very high level with a broad range of iron oxide pigments. It combines outstanding viscosity reduction and excellent hiding power. The new additive provides an optimized balance between electrostatic and steric stabilization, making it a very efficient additive. This additive reduces complexity and contributes to a more cost-efficient way to formulate decorative coatings. 

References

1   Evonik Corporation, TEGO Chemie Service GmbH. TEGO Journal, 4th ed.; 2012. pp 79-89.

2   Heilen, W. Additives for Waterborne Coatings. European Coatings Literature,  Vincentz Network GmbH & Co.: Hannover, Germany, 2009.

3   Winkler, J. Dispergieren von Pigmenten und Füllstoffen. European Coatings Literature, Vincentz Network GmbH & Co.: Hannover, Germany, 2012.

 

This paper was presented at the 2016 Waterborne Symposium in New Orleans.

KEYWORDS: dispersing agents Iron Oxide Pigments

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Markus Vogel, Evonik Corporation, Coatings Additives/TEGO, Essen, Germany

Frank Kleinsteinberg, Evonik Corporation, Coatings Additives/TEGO, Essen, Germany

Nikolina Milanovic, Evonik Corporation, Coatings Additives/TEGO, Richmond, VA

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Paint and Coating Market Reports
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Paint and Coating Market Reports
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts



PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci voices from the top ebook

PCI webinar

Related Articles

  • LANXESS Increases Prices for Iron Oxides

    See More
  • LANXESS Raises Prices for Iron Oxides

    See More
  • keyboard with currency symbols on keys

    LANXESS Announces Price Increase for Yellow Iron Oxide Pigments

    See More

Related Products

See More Products
  • organic coatings.jpg

    Organic Coatings: Science and Technology, 4th Edition

  • 9780323355957.jpg

    Adhesives Technology Handbook, 3rd Edition

See More Products
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Manufacturing Division
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing