Painting & Coating Industry (PCI) logo Powder coating summit logo
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • MATERIALS
  • TECHNOLOGIES
  • FINISHING
  • RESOURCES
  • EVENTS
  • DIRECTORIES
  • EMAGAZINE
  • CONTACT
cart
facebook twitter linkedin youtube
  • NEWS
  • Latest News
  • Market Trends & Reports
  • Price Alerts
  • Subscribe to eNewsletters
  • Global Top 10/ PCI 25
  • Weekly Featured Article
  • COATLE Word Game
  • PRODUCTS
  • Product News
  • Must See Products and Services
  • MATERIALS
  • Additives
  • Resins/Polymers
  • Pigments
  • Equipment
  • Distributors
  • TECHNOLOGIES
  • Adhesives
  • Architectural Coatings
  • Industrial Coatings
  • Nanotechnology
  • Powder Coatings
  • Solventborne
  • Special Purpose Coatings
  • Sustainability
  • UV Coatings
  • Waterborne
  • Waterborne
  • FINISHING
  • Finishing News
  • Finishing Technologies
  • Finishing Equipment
  • RESOURCES
  • Columns
  • Blogs
  • Coatings Supplier Handbook
  • Podcasts and Videos
  • PCI Store
  • eBooks
  • Sponsor Insights
  • White Papers
  • COATLE Word Game
  • Columns
  • Ask Joe Powder
  • Did you know?
  • Distribution Dive
  • Focus on Canada
  • Formulating With Mike
  • Innovation Insights
  • Moody's Coatings Conundrums
  • Powder Coating Perspectives
  • Target the Market
  • TiO2 Insider
  • Blogs
  • Editor's Viewpoint
  • Industry Insights
  • Podcasts and Videos
  • COAT-IT! Podcast
  • Videos/PCI TV
  • EVENTS
  • Coatings Trends & Technologies Summit
  • Paint and Coatings Academy
  • Webinars
  • Calendar of Events
  • Lifetime Achievement Award
  • DIRECTORIES
  • Buyer's Guide
  • Equipment Directory
  • Materials Directory
  • EMAGAZINE
  • Current Issue
  • eMagazine Archive
  • China Issue Archive
  • Editorial Advisory Board
  • CONTACT
  • Contact Us
  • Advertise
  • Subscribe to eMagazine
  • Subscribe to eNewsletters
Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Price Alerts
    • Subscribe to eNewsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
    • FINISHING
      • Finishing News
      • Finishing Technologies
      • Finishing Equipment
    • RESOURCES
      • Columns
        • Ask Joe Powder
        • Did you know?
        • Distribution Dive
        • Focus on Canada
        • Formulating With Mike
        • Innovation Insights
        • Moody's Coatings Conundrums
        • Powder Coating Perspectives
        • Target the Market
        • TiO2 Insider
      • Blogs
        • Editor's Viewpoint
        • Industry Insights
      • Coatings Supplier Handbook
      • Podcasts and Videos
        • COAT-IT! Podcast
        • Videos/PCI TV
      • PCI Store
      • eBooks
      • Sponsor Insights
      • White Papers
      • COATLE Word Game
    • EVENTS
      • Coatings Trends & Technologies Summit
      • Paint and Coatings Academy
      • Webinars
      • Calendar of Events
      • Lifetime Achievement Award
    • DIRECTORIES
      • Buyer's Guide
      • Equipment Directory
      • Materials Directory
    • EMAGAZINE
      • Current Issue
      • eMagazine Archive
      • China Issue Archive
      • Editorial Advisory Board
    • CONTACT
      • Contact Us
      • Advertise
      • Subscribe to eMagazine
      • Subscribe to eNewsletters

    Biocatalytic Coatings

    February 1, 2005


    Enzyme-based additives can be formulated to create novel biologically and chemically active coatings, including those that self-decontaminate and detoxify organophosphorus compounds such as nerve gases and pesticides.

    Since the 1700s and the introduction of calf stomach as a "bioreactor" for the production of cheese, enzymes have assumed an ever-expanding role in industry and technology. This has largely come about as a result of an evolving understanding of protein structure function. For example, in 1894 the Dutch chemist Emil Fisher proposed that enzymes and their substrates fit together like a "lock and key," and many industrial enzymes are valued today for just that reason, being both very efficient and very specific catalysts. However, some of the most significant industrial enzymes with respect to market volume are detergent proteases. The commercial success of these enzymes is based on many factors, not least of which is their relatively low substrate specificity.

    Enzymes, like the detergent proteases, have provoked a reevaluation of the "lock and key" paradigm, resulting in a new understanding that recognizes that the interacting molecules are flexible and can change their shape during the recognition process. Similarly, enzymes have traditionally been thought to be functionally restricted to very narrow environmental conditions, yet there is a growing awareness of enzymatic reactions that can occur in nonaqueous environments1 and of enzymes with temperature, salt, pressure and pH tolerances that exceed normal enzymatic ranges as isolated from extremophilic organisms.2 A new understanding of biochemical capabilities of enzymes is leading to the development of innovative, biocatalytic "smart coatings" by a new additive company, Reactive Surfaces Ltd. (RSL). The first area in which RSL biocatalytic coatings are demonstrating great promise is in the area of self-decontaminating coatings.

    Chemical-Agent Decontamination
    Current Approaches

    Many organophosphorus (OP) compounds are potent cholinesterase inhibitors, accounting for their widespread use as insecticides and chemical warfare agents. Common OP agents include the chemical warfare agents tabun (GA), soman (GD), sarin (GB), cyclosarin, VX and its isomeric analog Russian VX (R-VX). Historically, most approaches to chemical-agent decontamination are post-exposure, focusing on the treatment of surfaces after exposure has occurred and been subsequently detected. Post-exposure decontamination technologies currently available include the application of caustic solutions and foams, applications of superoxides, use of intensive heat and carbon dioxide applied for sustained periods, and incorporation of materials (TiO2 and porphyrins) into coatings that, when exposed to sustained high levels of UV light, will degrade chemical agents.

    Although each of these approaches can be effective under specific conditions, a number of limitations exist. Caustic solutions and superoxides degrade surfaces, create personnel handling and environmental risks, and require transport and mixing logistics. Foams require transport and present mixing logistics, may have personnel handling and environmental risks, and are not effective on sensitive electronic equipment or interior spaces. Decontamination with heat and carbon dioxide presents logistical requirements and does not allow for rapid reclamation of equipment. UV-based approaches can be costly and have logistical requirements, including access to UV-generating equipment and power.

    A New Approach

    Enzyme-based decontamination has been a longstanding research objective for a number of civilian and military research labs, notably those at Texas A&M University and U.S. Army research facilities. Over the past decade, this research has significantly expanded our understanding of the enzymes that degrade chemical agents. However, to date there has been limited success in using conventional approaches to harness the potential of these enzymes in systems that can be used readily and cost effectively for field-based military or civilian applications. Building upon the extensive base of scientific knowledge acquired over the past decade, RSL is commercializing novel enzyme additives that not only remain stable in paint but, remarkably, remain active for extended periods of time.

    RSL has developed OPDTOXTM, a self-decontaminating coating additive that is biocatalytic in nature and which represents a paradigm shift for chemical-agent decontamination. OPDTOX can serve either as a stand-alone decontamination method or as a complementary approach to existing decontamination techniques and products. When added to coatings, RSL additives create a reactive surface that will initiate the process of decontamination immediately upon exposure to organophosphorus pesticides and neurotoxins. Applied in advance of exposure, painted surfaces containing OPDTOX can continue to degrade OP compounds after repeated exposures and remain active following washing. The scientific basis of the product lies in the ability of bacterially derived enzymes to efficiently degrade OP compounds. The results are novel coatings that self-decontaminate following exposure to organophosphorus compounds, which includes many important environmental and security targets such as the nerve agents VX, GD, GB, thickened nerve agents, and pesticides such as malathion, parathion and coumaphos.

    The Enzyme of Choice

    The enzyme of choice for OP decontamination is organophosphorus hydrolase. Of the six major groups of enzymes (Table 1), approximately 80% of industrial enzymes are hydrolases. Hydrolases are enzymes that catalyze the hydrolytic cleavage of C-O, C-N and C-C bonds. A class of hydrolase known as organophosphorus hydrolase (OPH) can also cleave the P-O, P-F and P-S bonds of the organophosphorus compounds.

    Of the currently stockpiled nerve agents, VX is the most toxic, as well as the most persistent in the environment after release. In addition to the initial inhalation route of exposure common to such agents, persistent agents such as VX and thickened soman pose threats through dermal absorption.

    Enzymatic hydrolysis of OPs occurs when the compound is cleaved at the phosphoryl center's chemical bond, resulting in predictable byproducts that are acidic in nature but benign from a neurotoxicity perspective (Figure 1). By comparison, chemical hydrolysis can be much less specific, and in the case of VX, may produce byproducts that are extremely toxic. Although a number of enzymes have been identified that are capable of detoxifying OP compounds, OPH has the broadest substrate specificity (Table 2). The substrate range of OPH includes numerous insecticides (paraoxon, parathion, coumaphos) and the neurotoxic chemical warfare agents and their analogs. Catalytic specificities for this family of compounds have been shown to range from rates that are diffusion limited (e.g. paraoxon, P-O bond, kcat=104 sec-1) to rates that are six to eight orders of magnitude lower (e.g. acephate, P-N bond).4 The enzyme is composed of two identical monomers associated to form a remarkably stable dimeric enzyme (Figure 2), with a thermal Tm of approximately 75

    Biocatalytic Paint Surfaces

    Both chemical warfare agent and surrogate tests have been conducted on metal and wood surfaces painted with commercially available latex paint containing OPDTOX additives. Figure 5 illustrates the results from a surface test in which 1 x 10 cm aluminum coupons, coated with OPDTOX treated paint, were contaminated with the OP pesticide paraoxon (1 mg/cm2), allowed to react for the indicated times, extracted in isopropanol and then analyzed for the hydrolysis product p-nitrophenol by gas chromatography. In this study, two different "off-the-shelf" paints were compared. While these studies demonstrate significant decontamination with either paint, they also illustrate that reactivity can be further optimized and enhanced with tailored paint formulations. Additional studies indicate that coatings may be optimized for hydration levels and additive capacity to tailor these biocatalytic coatings for specific applications.

    At the September 2002 meeting of the NATO Army Armaments Working Group (WG-31) in France, a limited number of RSL's painted surfaces were tested for efficacy in decontaminating soman using standard NATO procedures and protocols. For the tests, 10 cm x 10 cm steel plates were coated with paint containing OPDTOX. Control plates plus two different versions of the OPDTOX additive were prepared. These surfaces were allowed to dry for several hours at room temperature and then tested following standard NATO protocols. OPDTOX painted surfaces were uniformly contaminated with the chemical warfare agent soman (1 mg/cm2 per coupon). The contaminated plates were maintained at or slightly above room temperature (>20 °C) without any forced airflow for various periods of time. At zero-time, 15 minutes, 30 minutes and 45 minutes, a sample was taken for each control and additive-containing plate series by submerging in isopropanol at the end point and placing on a shaker to thoroughly extract any residual nerve agent. Figure 6 illustrates the results, demonstrating that the two different OPDTOX additives tested detoxified the soman at levels over 65% and 77% after 45 minutes.

    Shelf-Life Potential

    Monitoring the shelf life of RSL's OPDTOX additive prior to formulation into a coating has shown that the additive remains active for years when stored as a dry powder at room temperature (Figure 7). In addition, monitoring the life of RSL-active coatings on test surfaces indicated that the additive in coatings remains active for sustained periods of time. All prepared surfaces were preserved in airtight plastic containers at ambient temperatures. Initial rates of substrate degradation by surfaces prepared with RSL coatings were tested in a buffered aqueous reaction. The activity was assayed just after painting and then again after 15 months, demonstrating maintenance of the activity profile of RSL coatings (Figure 8). In addition, the coatings have qualitatively demonstrated activity up to 26 months after preparation.

    Why Enzyme-Based Catalytic Coatings?

    Enzymes offer substantial advantages over chemical catalysts in a traditional industrial environment. They are biodegradable, work under mild conditions, often can provide benign alternatives to existing processes, and are not associated with the production of hazardous by-products or secondary waste. The current technology for OP decontamination involves the application of caustic solutions, foams, intensive heat and carbon dioxide for sustained periods. The biocatalytic coatings described here bring a new technology to bear on this problem, offering an opportunity for OP decontamination without the environmental impact. But equally important is the adaptability of OPH-based additives. Much like subtilisin, which provides the scaffolding for all the detergent proteases currently in use, OPH has the broad substrate specificity to handle the major classes of OP neurotoxins. And, with the rapidly increasing database of natural enzyme diversity, and recombinant DNA technologies, the protein modification tools exist today that will allow OP biocatalytic coatings to be tuned to a specific application.

    By tailoring enzymes for specific purposes, RSL is developing additives and mixtures of additives that have been bioengineered to exhibit increased activity and/or specificity for one or more chemical warfare agents. Similarly, RSL is investigating methods and formulations that are designed to increase the active life of the additive in paint on surfaces. While there are a large number of potential military applications for self-decontaminating surfaces, RSL's self-decontaminating technology has numerous non-military commercial applications as well.

    The development of cost-effective, self-cleaning surfaces will mitigate contact hazards for first responders, decrease the time needed for reclamation of contaminated spaces, and minimize environmental impacts commonly experienced with caustic solutions and foams. RSL is expanding the enzyme-based additives for coatings into areas that should allow for self-cleaning surfaces, mold-inhibiting surfaces, deodorizing surfaces, textile coatings, and catalytic coatings for waste stream decontamination. If RSL's success is a guide to the future, the limitations for uses of active biomolecules in "smart coatings" does not appear to be with the technology, rather only with the imagination of the paint chemist.

    Acknowledgements

    We would like to thank Dr. M. Pendleton and Ann Ellis of the Microscopy and Imaging Center at Texas A&M University for assistance with the electron microscopy experiments.

    For more information, contact Steven McDaniel, Reactive Surfaces, Ltd., 300 West Avenue, Austin, TX 78701; 512/472.8486; fax 512/472.8181; or e-mail smdaniel@reactivesurfaces.com.

    References

    1 Krishna, S.H. Developments and Trends in Enzyme Catalysis in Nonconventional Media. Biotechnol. Adv. 2002, 20:239-267.

    2 Eichler, J. Biotechnological Uses of Archaeal Extremozymes. Biotechnol. Adv. 2001, 19:261-278.

    3 DiSioudi, B.D.; Miller, C.E.; Lai, K.; Grimsley, J.K.; Wild, J.R. Rational Design of Organophosphorus Hydrolase for Altered Substrate Specficities. Chem.-Biol. Interact. 1999, 119-120:211-223.

    4 Lai, K.; Stolowich, N.J.; Wild, J.R. Characterization of P-S Bond Hydrolysis in Organophosphorothioate Pesticides by Organophosphorus Hydrolase. Arch. Biochem. Biophys. 1995, 318 (1):59-64.

    5 Grimsley, J.K.; Scholtz, J.M.; Pace, C.N.; Wild, J.R. Organophosphorus Hydrolase is a Remarkably Stable Enzyme That Unfolds Through a Homodimeric Intermediate. Biochemistry 1997, 36:14366-14374.

    6 McDaniel, C.S.; Harper, L.L.; Wild, J.R. Cloning and Sequencing of a Plasmid-borne Gene (opd) Encoding a Phosphotriesterase. J.Bacteriol. 1988, 170:2306-2311.

    Share This Story

    Looking for a reprint of this article?
    From high-res PDFs to custom plaques, order your copy today!

    Recommended Content

    JOIN TODAY
    to unlock your recommendations.

    Already have an account? Sign In

    • PCI-0724-Global10-Feature-1440.png

      2024 Global Top 10: Top Paint and Coatings Companies

      Who ranks on top? PCI’s annual ranking of the top 10...
      Global Top 10 and PCI 25
      By: Courtney Bassett
    • PCI-0724-PCI25-Feature-1440.png

      2024 PCI 25: Top Paint and Coatings Companies

      PCI's annual ranking of the top 25 North American paint...
      Global Top 10 and PCI 25
      By: Courtney Bassett
    • pci1022-Kinaltek-Lead-1170.jpg

      A Novel Pigment Production Technology

      Following an extensive R&D program that demonstrated...
      Paint and Coating Pigments
      By: Jawad Haidar and Nitin Soni
    You must login or register in order to post a comment.

    Report Abusive Comment

    Subscribe For Free!
    • eMagazine
    • eNewsletter
    • Online Registration
    • Subscription Customer Service

    The Coatings Minute: Print Returns with PCI’s New Showcase Issue

    The Coatings Minute: Print Returns with PCI’s New Showcase Issue

    The Coatings Minute: Your Inside Look at PCInnovations

    The Coatings Minute: Your Inside Look at PCInnovations

    The Coatings Minute: Why Industry News Matters More Than Ever

    The Coatings Minute: Why Industry News Matters More Than Ever

    CTT Registration Now Open

    CTT Registration Now Open

    More Videos

    Sponsored Content

    Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

    close
    • Modern arapartment complex painted in bright colors.
      Sponsored byEPS - Engineered Polymer Solutions

      Architectural Polymers Leading the Way in Coatings Innovation

    • paint sprayer in a workshop
      Sponsored byallnex

      Enabling Performance and Compliance: allnex Introduces a New Line of VOC Exempt Solvent-Borne Resins

    Popular Stories

    No. 3 AkzoNobel

    AkzoNobel to Close Two Manufacturing Sites

    A collage of products using non-PFAS

    A Surge in Non-PFAS Releases

    Modern living room interior with green plants, sofa and green wall

    Reimagining Architectural Paints with Plant-Based Acrylic Binders



    PCI Buyers Guide

    Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

    Start your RFP

    Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

    Find Suppliers

    Events

    September 3, 2025

    Coatings Trends & Technologies Summit

    The Coatings Trends & Technologies (CTT) Summit is an annual conference for both liquid and powder coatings formulators and manufacturers to discuss innovations in coatings technology. This event combines high-quality technical presentations, a resource-rich exhibit hall, and dedicated networking opportunities to connect scientific minds, foster innovation, and cultivate game-changing new ideas!

    January 1, 2030

    Webinar Sponsorship Information

    For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

    View All Submit An Event

    Poll

    Longest-running laboratory experiment

    What is the longest-running laboratory experiment?
    View Results Poll Archive

    Products

    CTT Summit Short Courses (Live 9/3/25)

    Coatings Trends & Technologies Summit is expanding its offerings with four short courses. These short courses will offer an extensive day of interactive learning.

    See More Products
    pci  webinar april 2025

    PCI CASE EBOOK

    Related Articles

    • James W. Rawlins Receives American Coatings Award

      See More
    • Smart Coatings On The Move

      See More
    ×

    Keep the info flowing with our eNewsletters!

    Get the latest industry updates tailored your way.

    JOIN TODAY!
    • RESOURCES
      • Advertise
      • Contact Us
      • Directories
      • Store
      • Want More
    • SIGN UP TODAY
      • Create Account
      • eMagazine
      • eNewsletters
      • Customer Service
      • Manage Preferences
    • SERVICES
      • Marketing Services
      • Reprints
      • Market Research
      • List Rental
      • Survey & Sample
    • STAY CONNECTED
      • LinkedIn
      • Facebook
      • Youtube
      • X (Twitter)
    • PRIVACY
      • PRIVACY POLICY
      • TERMS & CONDITIONS
      • DO NOT SELL MY PERSONAL INFORMATION
      • PRIVACY REQUEST
      • ACCESSIBILITY

    Copyright ©2025. All Rights Reserved BNP Media.

    Design, CMS, Hosting & Web Development :: ePublishing

    Painting & Coating Industry (PCI) logo Powder coating summit logo
    search
    cart
    facebook twitter linkedin youtube
    • Sign In
    • Create Account
    • Sign Out
    • My Account
    Painting & Coating Industry (PCI) logo Powder coating summit logo
    • NEWS
      • Latest News
      • Market Trends & Reports
      • Price Alerts
      • Subscribe to eNewsletters
      • Global Top 10/ PCI 25
      • Weekly Featured Article
      • COATLE Word Game
    • PRODUCTS
      • Product News
      • Must See Products and Services
    • MATERIALS
      • Additives
      • Resins/Polymers
      • Pigments
      • Equipment
      • Distributors
    • TECHNOLOGIES
      • Adhesives
      • Architectural Coatings
      • Industrial Coatings
      • Nanotechnology
      • Powder Coatings
      • Solventborne
      • Special Purpose Coatings
      • Sustainability
      • UV Coatings
      • Waterborne
      • FINISHING
        • Finishing News
        • Finishing Technologies
        • Finishing Equipment
      • RESOURCES
        • Columns
          • Ask Joe Powder
          • Did you know?
          • Distribution Dive
          • Focus on Canada
          • Formulating With Mike
          • Innovation Insights
          • Moody's Coatings Conundrums
          • Powder Coating Perspectives
          • Target the Market
          • TiO2 Insider
        • Blogs
          • Editor's Viewpoint
          • Industry Insights
        • Coatings Supplier Handbook
        • Podcasts and Videos
          • COAT-IT! Podcast
          • Videos/PCI TV
        • PCI Store
        • eBooks
        • Sponsor Insights
        • White Papers
        • COATLE Word Game
      • EVENTS
        • Coatings Trends & Technologies Summit
        • Paint and Coatings Academy
        • Webinars
        • Calendar of Events
        • Lifetime Achievement Award
      • DIRECTORIES
        • Buyer's Guide
        • Equipment Directory
        • Materials Directory
      • EMAGAZINE
        • Current Issue
        • eMagazine Archive
        • China Issue Archive
        • Editorial Advisory Board
      • CONTACT
        • Contact Us
        • Advertise
        • Subscribe to eMagazine
        • Subscribe to eNewsletters