Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Price Alerts
    • Subscribe to eNewsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
    • FINISHING
      • Finishing News
      • Finishing Technologies
      • Finishing Equipment
    • RESOURCES
      • Columns
        • Ask Joe Powder
        • Did you know?
        • Distribution Dive
        • Focus on Canada
        • Formulating With Mike
        • Innovation Insights
        • Moody's Coatings Conundrums
        • Powder Coating Perspectives
        • Target the Market
        • TiO2 Insider
      • Blogs
        • Editor's Viewpoint
        • Industry Insights
      • Coatings Supplier Handbook
      • Podcasts and Videos
        • COAT-IT! Podcast
        • Videos/PCI TV
      • PCI Store
      • eBooks
      • Sponsor Insights
      • White Papers
      • COATLE Word Game
    • EVENTS
      • Coatings Trends & Technologies Summit
      • Paint and Coatings Academy
      • Webinars
      • Calendar of Events
      • Lifetime Achievement Award
    • DIRECTORIES
      • Buyer's Guide
      • Equipment Directory
      • Materials Directory
    • EMAGAZINE
      • Current Issue
      • eMagazine Archive
      • China Issue Archive
      • Editorial Advisory Board
    • CONTACT
      • Contact Us
      • Advertise
      • Subscribe to eMagazine
      • Subscribe to eNewsletters

    Kaolin Clay: Functional Optical Additives

    August 1, 2003
    Figure 1 / Kaolinite Structure
    Kaolin is the common name for the mineral products comprised totally or substantially of the aluminum silicate clay mineral kaolinite. Milled and air-classified grades of raw kaolin may contain small amounts of related sheet silicates (mica, illite, chlorite, smectite) and quartz. Most of the kaolin used by the coatings industry is water-washed to remove these mineral impurities. Kaolin has a platy structure, but unlike talc and mica, its value in coatings derives more from its contribution to optical properties than to physical properties.

    Table 1 / Kaolin Clay: Range of Basic Properties

    Structure

    The kaolinite structure can be depicted as a layer of silica rings joined to a layer of alumina octahedra through shared oxygens, as shown in Figure 1. A well-formed individual kaolinite particle has the shape of a hexagonal plate. In nature these plates occur in stacks or "books" that exhibit varying degrees of stacking regularity. Because an individual kaolinite particle has an oxygen surface on one side and a hydroxyl surface on the other, it is strongly hydrogen bonded to the plates above and below it. This makes delamination more difficult than for the other platy silicate fillers, talc and mica. Figure 2 shows platy kaolin particles after delamination. Kaolin is hydrophilic and thus readily water dispersible; for nonaqueous applications, matrix compatibility is improved by surface treatment.

    Table 2 / Typical Functional Use, By Clay Product

    Kaolin Grades

    Nearly all of the coatings-grade kaolin currently produced in the United States is sedimentary clay from Georgia, which hosts most of the world's major kaolin belt, stretching the 250 miles between Aiken, SC, and Eufala, AL. Georgia's clay reserves are estimated at 1.4 billion tons. Despite the well-entrenched position of the kaolin belt producers, a source of naturally high-purity, high-brightness kaolin has recently come on stream in Utah.1

    Kaolin clay is commonly differentiated as "hard" clay or "soft," according to terminology borrowed from the rubber industry. Hard clay is relatively poorly crystallized, very fine-grained kaolin, about 0.2 to 0.4 æm median particle size by sedimentation. It provides reinforcement in rubber, resulting in hard, uncured compounds. Soft clay is a better-crystallized, coarser kaolin, about 1.3 µm median particle size by sedimentation. It has a low reinforcing effect in rubber, resulting in softer uncured compounds.

    The basic differentiation of coatings-grade kaolins is hydrous clay and calcined clay. Hydrous clays are structurally unmodified, retaining their hydrophilic surface hydroxyls, the so-called water of crystallization. Most of the hydrous clay used in coatings is water-washed. Water-washed grades are made by slurrying the clay in water and then centrifuging or hydrocycloning it to remove impurities and produce specific particle size fractions. The refined slurry is either dewatered (to reduce soluble impurities) and dried, or concentrated to 70% solids and sold in slurry form. Water-washed clays are often treated to improve their brightness. This includes chemical bleaching and/or high-intensity magnetic separation to remove iron and titanium impurities.

    Delaminated clay is made by attrition milling the coarse clay fraction from the water washing of soft clay. This breaks down the kaolinite stacks into thin, wide individual plates, improving brightness, opacity and barrier properties.

    Airfloat clay is dry-ground hydrous kaolin that has been air-separated to reduce impurities and control particle-size distribution. The coatings industry uses only minor amounts of air-float clay because of its generally poorer color and its greater abrasivity, caused by mineral impurities, compared to water-washed grades.

    Calcined clay is made by the thermal treatment of water-washed and bleached kaolin. Low-temperature calcination, at about 650-700 deg C, removes structural hydroxyls and forms amorphous metakaolin. Specific gravity is reduced from 2.58 to about 2.50 in the process, while hardness and porosity, and thus brightness, opacity and oil absorption, are increased. Fully calcined clays, with maximum brightness and opacity, are produced in the 1000-1150 deg C range. This is hot enough to totally collapse the amorphous structure, with a consequent increase in specific gravity to 2.6-2.7, without causing the mineralogical transformation to mullite (specific gravity 3.2, hardness 6-7). The balance of opacity and sheen derived from calcined clays can be manipulated by the temperature, rate of heating and fluxes used in the calcination process.

    Because of the importance of kaolin's effect on the optical properties of coatings, these clays are offered in more varieties than are other silicate functional fillers in order to provide a range of particle crystallinity and shapes, controlled particle size fractions, brightness and opacification. These clays are made even more versatile through chemical modification. Grades are available with dispersant coatings for easy dispersion in water, as well as stearate or silane surface treatment for improved compatibility with organic matrices. "Structured" clay products, in some cases also called SAMS (synthetic alkali metal alumino-silicates), are made by reacting kaolin with alkalies, such as alkaline silicates, under elevated temperatures and pressures. The resulting alkaline products are essentially kaolin plates with a rim of amorphous reaction product. The reaction and subsequent agglomeration can be conducted to provide products with increased, but controlled, levels of porosity, oil absorption, brightness, opacification, tinting strength and flatting.2 A different approach to structured pigments for better optical properties is to electrostatically bind oxide particles, such as silica or titania, to clay faces.

    Table 3 / Kaolin Clay: Typical Uses

    Properties and Uses

    The United States is the leading supplier of filler-grade kaolin clays, currently producing about 7.5 million tons/year, of which approximately 90% comes from Georgia and 45% is exported. The domestic consumption of Georgia kaolin consists of approximately 64% water-washed, 15% delaminated, 11% calcined and 9% airfloat. About 66% of domestic consumption is used by the paper industry for coating (56%) and filling (10%); the second largest user is the coatings industry, with 6%.3 The overwhelming emphasis on clay for paper coating, and the attendant focus on optical properties, accounts for the wide variety of clay products available to the coatings industry.

    The range of properties provided by kaolin clay products is presented in Table 1. The primary use of kaolin in coatings is as a TiO2 extender in waterborne architectural paints. Calcined clays generally provide the best brightness, TiO2 extension and dry hide. Water-washed and delaminated grades also contribute to extension and dry hide, as well as covering power and gloss control (finer particle size = higher gloss). The typical preferred uses by function of the various clay products are given in Table 2.

    One author recently discussed fine particle size, 0.8æm and 1.4æm, structured-surface calcined kaolins that were designed for flatting in flat and satin finish paints without sacrificing opacity. These high-brightness products contribute sufficiently to dry film opacity that a significant reduction in TiO2 is possible, although in practice this is limited by the lack of a commensurate improvement in wet film opacity. In addition to sheen reduction with improved opacity, significantly improved touch-up properties were also noted.4 In the same article, an ultrafine, 0.2æm hydrous platy kaolin was described as an extender for gloss paints. Because this clay is similar in size to TiO2, it functions as an effective spacer, optimizing opacity by maximizing the exposure of TiO2 surfaces to light and allowing an 8-12% replacement of TiO2.

    Beyond the Light

    Despite the fact that the coatings industry focuses primarily on the optical properties of kaolin clays, this mineral also serves as a functional filler. Kaolin is an inherently fine-particle-size, platy, chemically inert mineral. It is available with neutral to slightly acidic pH and in controlled particle size distributions. Hydrous clays are used for their contribution to suspension stability, flow properties, leveling, film smoothness, film strength, and weatherability. Delaminated clays are preferred for barrier properties and for more controlled chalking and overall durability in exterior coatings. Because of their greater hardness, calcined clays provide better scrub resistance, which is otherwise not improved with kaolins. The types of coatings in which kaolin clays are used are indicated in Table 3.

    For example, an ultrafine hydrous clay used for efficient TiO2 extension has been reported to also improve exterior durability as well as gloss and gloss retention.5 Other applications where kaolin clays have been cited as functional additives are anti-corrosion paints, high solids paints, moisture-cured systems and automotive electrodeposition primers.6 In addition, a surface-treated, fine-grind kaolin has been shown to provide better chip resistance than mica, talc and barite in an intermediate coating.7

    For more information, contact RT Vanderbilt Co., phone 203/853.1400; fax 203/853.1452; visit www.rtvanderbilt.com; e-mail pciullo@rtvan derbilt.com or srobinson@rtvanderbilt.com.

    References

    1 Utah Clay Technology, Kaolin Overview, www.utah.com, March 2003.

    2 Broom, T.T. Origins of Certain Kaolin Pigments and Their Relative Performance in Flat Wall Paints. Mod. Pt. & Ctgs. January 1997.

    3 Virta, R.L. Clay and Shale, Minerals Yearbook; USGS, Reston, VA, 2001.

    4 Ashek, L. New Generation Kaolin-based Pigment Extenders. PCI, March 2003

    5 Irvine, E. No Compromise: The Effectiveness of Specialty Ultrafine Kaolin Pigments as TiO2 Augmenters. Mod. Pt. & Ctgs. January 2001.

    6 Stoneback, C. Using Kaolin as a High Performance Coating Additive. PCI, October 1996.

    7 Khokhani, A. Surface-Treated Aluminum Silicate can be Used in Industrial Coatings. PCI, February 1993.

    Share This Story

    Looking for a reprint of this article?
    From high-res PDFs to custom plaques, order your copy today!

    Recommended Content

    JOIN TODAY
    to unlock your recommendations.

    Already have an account? Sign In

    • PCI-0724-Global10-Feature-1440.png

      2024 Global Top 10: Top Paint and Coatings Companies

      Who ranks on top? PCI’s annual ranking of the top 10...
      Paint and Coating Market Reports
      By: Courtney Bassett
    • PCI-0724-PCI25-Feature-1440.png

      2024 PCI 25: Top Paint and Coatings Companies

      PCI's annual ranking of the top 25 North American paint...
      Global Top 10 and PCI 25
      By: Courtney Bassett
    • pci1022-Kinaltek-Lead-1170.jpg

      A Novel Pigment Production Technology

      Following an extensive R&D program that demonstrated...
      Paint and Coating Pigments
      By: Jawad Haidar and Nitin Soni
    You must login or register in order to post a comment.

    Report Abusive Comment

    Subscribe For Free!
    • eMagazine
    • eNewsletter
    • Online Registration
    • Subscription Customer Service

    More Videos

    Sponsored Content

    Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

    close
    • paint sprayer in a workshop
      Sponsored byallnex

      Enabling Performance and Compliance: allnex Introduces a New Line of VOC Exempt Solvent-Borne Resins

    • various shades of orange pigments and colorants
      Sponsored byVibrantz Technologies

      Solid Colorant Technology Paves the Way for a Sustainable, High-Performance Future in Coatings

    Popular Stories

    A collage of products using non-PFAS

    A Surge in Non-PFAS Releases

    Default Aerospace Image

    PPG Plans Major Aerospace Facility

    Names-467607423.jpg

    Two PPG Scientists Earn Rare Honor



    PCI Buyers Guide

    Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

    Start your RFP

    Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

    Find Suppliers

    Events

    January 1, 2030

    Webinar Sponsorship Information

    For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

    View All Submit An Event

    Poll

    Longest-running laboratory experiment

    What is the longest-running laboratory experiment?
    View Results Poll Archive

    Products

    Automotive Paints and Coatings, 2nd Edition

    Automotive Paints and Coatings, 2nd Edition

    Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

    See More Products
    pci  webinar april 2025

    PCI CASE EBOOK

    Related Articles

    • Optical Film Formation Analysis

      See More
    • New Generation Kaolin-Based Pigment Extenders

      See More
    • Ultrafast Synthesis of Nanocomposite Coatings by UV Curing of Clay- or Silica-Filled Resins

      See More
    ×

    Keep the info flowing with our eNewsletters!

    Get the latest industry updates tailored your way.

    JOIN TODAY!
    • RESOURCES
      • Advertise
      • Contact Us
      • Directories
      • Store
      • Want More
    • SIGN UP TODAY
      • Create Account
      • eMagazine
      • eNewsletters
      • Customer Service
      • Manage Preferences
    • SERVICES
      • Marketing Services
      • Reprints
      • Market Research
      • List Rental
      • Survey & Sample
    • STAY CONNECTED
      • LinkedIn
      • Facebook
      • Youtube
      • X (Twitter)
    • PRIVACY
      • PRIVACY POLICY
      • TERMS & CONDITIONS
      • DO NOT SELL MY PERSONAL INFORMATION
      • PRIVACY REQUEST
      • ACCESSIBILITY

    Copyright ©2025. All Rights Reserved BNP Media.

    Design, CMS, Hosting & Web Development :: ePublishing