Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!
Paint and Coatings AdditivesPaint and Coating Resins & PolymersArchitectural CoatingsSolventborne CoatingsWaterborne CoatingsGreen Technology

Cobalt-Free Catalyst Gives New Life to the Alkyd Coatings Market

By Shelley Parkerson
pci0311-OMG-lg.jpg
March 1, 2011
Alkyd resins have been used widely in paints designed for durability and high performance. These paints, applied to high-traffic-area surfaces such as doors, trim and cabinets have been an excellent performance choice; however, conventional alkyd paints have been solvent-based. The regulatory shift toward lower VOC levels has moved consumer preferences away from solvent-based alkyds to other low-VOC options, including water-based and high solids paints such as acrylics, latex and polyurethanes.


Recently, there has been renewed interest in alkyd technologies as environmental concerns have shifted and resin manufacturers strove to use bio-renewable resources. Alkyd resin manufacturers have found low-VOC options using higher solids resins (requiring less solvent) and water-based or water-reducible resins. One obstacle faced when using these new technologies was keeping the same drying characteristics of the conventional paint. Conventional solvent systems had excellent drying characteristics; with the new low-VOC options, typical paint driers based on metallic salts such as cobalt, zirconium and calcium did not provide the required cure. It was difficult for alkyds to compete against acrylic and latex options in the market.

This article highlights a new cobalt-free catalyst that helps to achieve the necessary cure time as well as improve properties associated with water-based, high solids alkyds and alkyd-modified resins. The catalyst provides the missing piece in new, low-VOC alkyd formulations, and kills two birds with one stone by curing the coating without the use of cobalt. Alkyd resins offer excellent performance in the decorative and light-end industrial paint markets, are cost effective and can be derived from renewable resources. With the introduction of this new catalyst, alkyd resins can now better meet the demands of today’s market.


Novel Catalyst

Courtesy of OMG Americas, Inc.
Figure 1 Click to enlarge

The mechanism of driers in the curing process has been thoroughly studied and is well understood. It involves radical processes to attain polymerization of the unsaturated resins present in paint/ink formulations via activation of alkyl hydroperoxides by the metallic salts/complexes.(1,2) Although it was initially created by the detergent industry as a tomato stain bleaching complex, the new catalyst has been found to activate the alkyd drying process in a similar fashion.

Previous work to meet the challenges of curing new alkyd resins was based on the modification of traditional metal carboxylates. The new product, however, is the result of a very different approach. Unilever had done extensive research on metal-based catalysts for stain bleaching in laundry products. Iron-based catalysts with pentadentate donor ligands were studied in detail (Figure 1). Research has shown that these iron-based catalysts activate hydroperoxides originating from the unsaturated food oils (such as olive or sunflower oil) typically present in tomato stains. Subsequently, radicals are formed that give rise to oxidation of other unsaturated oils, which then form other peroxides with dioxygen (Figure 2).(3)

Courtesy of OMG Americas, Inc.
Figure 2 Click to enlarge



These radical processes are similar to those described for the paint/ink-drying processes,(1,2) which led to the hypothesis that the catalysts studied for detergent stain bleaching might also be active for polymerization of unsaturated resins used in paints and inks. Preliminary studies using linseed oil supported this hypothesis and showed that catalysts based on ligands L1 and L2 (Figure 1) are much more active than conventional cobalt carboxylates for drying linseed oil.(4) On a molar basis, the activity of the catalysts was found to be 10-100 times more active than what had been observed for the cobalt carboxylate.(4) As the compound with ligand L1 is more synthetically viable, subsequent detailed studies were done on this compound.

Experiments and Results

Dry Time

Water-based Alkyds

The new catalyst from OMG, hereafter called Borchi® OXY - Coat (BOC), has now been tested in many alkyd resins including standard oil-based, high solids and water-based types. Surprisingly, water-based alkyds required the least amount of BOC for suitable dry times. Addition rates of 0.5-2.0% based on total solids were enough to cure most resin systems, and in most cases no additional secondary driers were needed. Gloss and hardness results are similar to those in traditional systems.

Courtesy of OMG Americas, Inc.
Figure 3 Click to enlarge

New resin development consists of a range of modified resins, including modified polyurethane dispersions. These resins are also oxidatively cured and require a curing agent. As shown in Figure 3, Borchi OXY - Coat is highly effective in these systems when compared to cobalt. In the formulation including BOC, dry time was reduced by over 50% initially, and shows a decrease in dry time after 2 months in storage.
 

Other metals frequently used for curing modified waterborne alkyds are combinations of manganese (Mn) and zirconium (Zr). Figure 4 shows an improvement when using the Borchi OXY - Coat over the Mn, Zr combination in a modified polyurethane dispersion.

Courtesy of OMG Americas, Inc.
Figure 4 Click to enlarge

Another benefit seen with Borchi OXY - Coat in waterborne alkyds is excellent performance in adverse curing conditions. The performance of cobalt driers under conditions of low temperature and high humidity is often poor, with drying times being extended considerably (by 50% or more). Drying tests for several different resin systems under low-temperature and high-humidity conditions showed the performance of Borchi OXY - Coat is not as sensitive to such adverse conditions (Figure 6). In fact the BOC showed better dry times compared to the standard cobalt, zirconium and calcium drier package.

Courtesy of OMG Americas, Inc.
Figure 5 Click to enlarge

 

High Solids Alkyds
Unlike standard drier packages, the optimal addition level of Borchi OXY - Coat is resin dependent and requires testing with each resin type to determine proper levels. In many instances, BOC can act as a standalone compound, requiring no additional driers. In some cases, such as with high solids resins, the addition of a calcium, zirconium, or potassium drier can be used to obtain required hardness or enhance the through cure (Figure 7).

Courtesy of OMG Americas, Inc.
Figure 6 Click to enlarge

Improvement in Color

Courtesy of OMG Americas, Inc.
Figure 7 Click to enlarge

When discussing an iron catalyst, one question that comes to mind is, will there be a yellow tint in the final coating? Another surprise observed with BOC is that there is improved color as compared to standard drier packages (Table 1, Figure 8).

This can be explained by the composition of the molecule. Actual levels of iron in the supplied catalyst are parts per million. Due to the activity of the BOC, the material is supplied as a 1% solution in propylene glycol. The activity of the catalyst comes from the ligand structure; the iron level in the final coating is at trace levels and therefore does not contribute any color.

Courtesy of OMG Americas, Inc.
Table 1 Click to enlarge

Anti-Skinning Agents

Courtesy of OMG Americas, Inc.
Figure 8 Click to enlarge

The use of methyl ethyl ketoxime (MEKO) anti-skinning agents is necessary in typical solvent-based alkyds to increase open time and keep the surface from skinning in the can during storage. In cobalt-based systems the MEKO is able to work as an anti-oxidizing agent as well as complex with the cobalt to reduce its activity. MEKO cannot complex with the iron in the system, therefore, it is not as effective and more may be required. Alternative oxime- and phenol-free anti-oxidants are available, such as the Ascinin® Antiskin line from OMG, and work effectively with the catalyst in high solids systems. The use of anti-skinning agents in water-based alkyds is not usually necessary.


Conclusion

Lab tests demonstrate Borchi OXY - Coat can reduce dry times, prevent loss of dry, cure in adverse conditions, and improve color in waterborne alkyds and alkyd modified resins. In high solids resins the use of secondary driers may be necessary to obtain optimal dry time and hardness. Borchi OXY - Coat, along with new resins in the market, has given new life to the alkyd coatings market. It will enable resin suppliers to continue to develop low-VOC and waterborne alkyd resins, including those composed from renewable resources.

This article is based on a paper that was presented at the 2010 Coating Trends and Technologies Conference, sponsored by PCI Magazine and the Chicago Society for Coatings Technology.

KEYWORDS: Alkyd Resins catalysts Driers Green Technology Inks Low-VOC

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Market Development Manager, OMG Americas, Inc., Westlake, OH

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Global Top 10 and PCI 25
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Global Top 10 and PCI 25
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts



PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci voices from the top ebook

PCI webinar

Related Articles

  • Borchi Phoenix Photos Dragon

    New Low-VOC Catalyst Enhances Drying in Alkyd Coatings

    See More
  • AmCoat Week of 921 Lead Image.jpg

    Ceramic Elastomeric Coating Gives New Life to Brick Homes

    See More
  • pci0423-Formulating-874157664-1170.jpg

    Alkyd Resins, Part Four: The Life Cycle Assessment of Alkyd Emulsions

    See More

Related Products

See More Products
  • marketsandmarketslogo.jpg

    Protective Coatings Market by Resin Type...

  • marketsandmarketslogo.jpg

    Metallic Powder Coatings Market by Process Type (Bonding, Blending, Extrusion)...

  • marketsandmarketslogo.jpg

    Pipe Coatings Market by Surface (Internal and External)...

See More Products
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing