Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!
Paint and Coatings AdditivesArchitectural CoatingsIndustrial CoatingsSolventborne CoatingsWaterborne Coatings

Enhanced Dry-Film Coating Performance Through Controlled-Release IPBC

By Raman Premachandran, Karen Winkowski
pci0711-ISP-lg.jpg
July 3, 2011
Biocides are necessary to prevent the microbial deterioration of many industrial coatings. The two main applications of biocides are (a) to prevent spoilage of the wet-state product during storage and transport (in-can protection), and (b) to ensure long-term performance of the coating (dry-film protection).(1)

Upon drying, both water- and solvent-based coatings are susceptible to colonization by fungi and/or algae. The growth of microorganisms on dry film not only affects the appearance of the coating (discoloration), but it may also compromise its performance (biodeterioration). Fungi can penetrate coatings, resulting in cracking, blistering and loss of adhesion, leading to decay or corrosion of the underlying substrate. Algae colonies, which seem to grow more rapidly on porous substrates such as stucco, cement and bricks, have the ability to occlude water. The freezing and thawing of this entrapped water may induce cracking or increase the permeation properties of the coating, leading to failure. The presence of water may also encourage colonization by other microorganisms that, in turn, may cause biodeterioration.(2) The type of microorganism that can colonize the coating will depend on several factors, including moisture content of the surface, presence of nutrients, substrate and coating composition.(3)

In order to be most effective, the biocide needs to be present at the coating interface. This makes it susceptible to water leaching. Controlling the release of the biocide through encapsulation could ensure that a minimum concentration of biocide is always maintained at the surface interface, extending the shelf life of the coating. Additionally, this controlled release could reduce the amount of biocide that is released to the environment over a period of time.

This paper describes the controlled release of IPBC (3-iodo-2-propynyl butylcarbamate) through encapsulation. Long-term protection of the surface is enabled through the adsorption interaction between the biocide and the carrier.(4,5) This renders the biocide more resistant to leaching. Encapsulated IPBC was released more slowly than non-encapsulated, as measured by analytical and microbiological methods. The encapsulated biocide was also more resistant to environmental degradation from UV/heat. Furthermore, outdoor exposure tests of paints containing encapsulated IPBC showed enhanced dry-film protection.

Experimental

Paint Film Sample Preparation
Encapsulated and non-encapsulated IPBC were added at various levels to paint samples. Drawdowns were prepared by casting 3-mil films onto drawdown paperboard (Lanetta) and allowed to dry at room temperature for at least 24 h.

IPBC Measurements
IPBC Present in Leachate Water
Paint samples were prepared as described above containing 10,000 ppm of IPBC. Paint films were suspended in 100 mL water with constant stirring. The leachate water was collected at different time intervals and analyzed by GC UV-Vis spectroscopy for IPBC content. The concentration of IPBC was determined using a standard IPBC curve at maximum absorbance of 224-228 nm.

Quantification of IPBC in Paint Films by XRF
Paint samples prepared as described above containing 2,000 ppm of IPBC were leached for various time intervals at a leach rate of 1 liter per hour. Samples were dried for at least 24 h. The PANalytical Epsilon 5 X-Ray Fluorescence (XRF) instrument was used to analyze the samples for iodine content.(6) A standard IPBC curve was developed with different concentrations of IPBC and was linear up to 4,000 ppm of IPBC. The linear correlation was independent of the paint formulation used to make the film. Base lines of each paint film were obtained before and after leaching.

Delta Y Measurements
Paint samples were prepared as described above containing 1,000 ppm of IPBC. Samples were placed in the QUV unit under UVB bulbs for 24 h. The YI (yellowness index) was measured with a spectrophotomer (CM2500d from Konica Minolta) within 1 h after taking the films from the QUV unit (ASTM E 313 - 10 Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates). The Delta Y was determined by subtracting the YI of the biocide-treated sample minus the untreated control sample after QUV exposure.

Efficacy Studies

Accelerated Fungal Testing
ASTM D 5590 (Determining the Resistance of Paint Films and Related Coatings to Fungal Defacement by Accelerated Four-Week Agar Plate) was used to measure efficacy of the various biocide treatments on the paint films. Samples were prepared as described above except that 500 ppm of IPBC was added to the paint samples. Paint samples were leached as described above and inoculated with a mixed fungal suspension consisting of Aspergillus niger (ATCC 6275) and Penicillium funiculosum (ATCC 11797), 107 spores/mL final concentration. The plates were then incubated for 28 days at 28 ºC and 85% RH. Fungal growth was rated on the surface of the painted sample on a scale from 0-4, where “0” represents no growth; 1 represents traces of growth (< 10%); 2 represents light growth (10-30%); 3 represents moderate growth (30-60%) and 4 represents heavy growth (60% to complete coverage).

Outdoor Test Fence Exposure
Paint samples were prepared containing 3,000 ppm of IPBC (encapsulated and non-encapsulated). Western Red Cedar was used as a substrate. Every panel was brush coated with one coat of primer on the smooth veneer side and also back coated with one coat of aluminum paint. The panel was divided into three equal 1-foot sections. The center served as a control and received two coats of the paint with no fungicide. The left and the right sides received two topcoats of biocide-treated paint. After drying, the panels were exposed facing North at a 90º angle.

Figure 1 Click to enlarge

Results and Discussion

The controlled release of IPBC from paint films was investigated in different ways. The films were placed in water and the leachate was collected at various time intervals. The amount of IPBC that leached out was measured by UV spectroscopy. Figure 1 shows the cumulative IPBC content in the leachate. Encapsulating the IPBC (IPBC CR) resulted in a decreased amount of IPBC leaching out of the film. In order to measure the amount of IPBC remaining on the surface of the coating, a non-destructive X-Ray fluorescence (XFR) methodology was developed.

Figure 2 Click to enlarge

As shown in Figure 2, the amount of IPBC remaining in the film was higher for the encapsulated IPBC. The amount of IPBC released also depended on the intrinsic properties and composition of the paint. In this example, the glossy paint showed higher retention levels of the IPBC than the flat paint.

Microbiological tests were additionally used to demonstrate the controlled release of the encapsulated IPBC. Surface protection assays were conducted according to ASTM Method D 5590. In this four-week accelerated study, the amount of fungal growth on the sample was measured after 28 days of incubation. As shown in Table 1, the encapsulated biocide (IPBC CR) provided longer-lasting protection to the surface of the sample (0 rating) after extensive leaching.

Table 1 Click to enlarge

Tests were also conducted outdoors. Wood panels containing encapsulated vs. non-encapsulated IPBC were exposed in the test fence. A quick-fail acrylic exterior paint was used in these studies. After 18 months exposure, samples were evaluated for the degree of defacement on the paint surface. As shown in Figure 3, the sample containing the encapsulated biocide showed the least surface defacement.

Figure 3 Click to enlarge

Additional experiments were conducted to demonstrate that the encapsulated IPBC shows reduced yellowing when exposed to UV light. Paint samples containing the different biocides at 1,000 ppm were exposed to UV radiation (B-bulbs, 24 h). As shown in Figure 4, the encapsulated biocide was less susceptible to yellowing after UV/heat exposure in the two different paints tested.

Figure 4 Click to enlarge

Conclusions

The controlled release of IPBC through microencapsulation into an inorganic carrier was demonstrated by analytical and microbiological assays. The controlled release mechanisms maintain a minimum biocide concentration in the coating interface over an extended period of time, preventing fungal growth. This results in a longer coating shelf life given the same initial biocide concentration. Alternatively, lower biocide levels could be used to obtain a similar shelf life. The inorganic carrier provides the molecule additional protection against environmental degradation processes (such as UV/heat degradation), further enhancing dry film protection. IPBC CR is currently available from ISP as a 40% IPBC dispersion under the trade name Fungitrol® 940CR.

This paper was presented at the 38th Annual Waterborne Symposium, February 2011, in New Orleans.

KEYWORDS: Biocides Microencapsulation

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Sr. Scientist II, ISP, Wayne, NJ
Sr. Technical Director, Performance Chemicals & Industrial Biocides, ISP, Wayne, NJ

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Global Top 10 and PCI 25
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Paint and Coating Market Reports
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts



PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci voices from the top ebook

PCI webinar

Related Articles

  • Enhanced Stamping Through Dry Lubrication

    See More
  • EIFS panel preparation

    An Evaluation of Controlled-Release Preservatives in Europe

    See More
  • Performance of Dry Film Preservatives Under Outdoor Conditions

    See More

Related Products

See More Products
  • corrosion.jpg

    Corrosion Control Through Organic Coatings 2nd Edition

  • thin film.jpg

    Thin Film Coatings Properties, Deposition, and Applications

See More Products
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Manufacturing Division
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing