Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!
Paint and Coating Market Reports

Researchers Create Wrinkled Surfaces with Precise Patterns

By David Chandler
Market Forecasts
October 1, 2012

The following news article appeared on the MIT Media Relations Website.


 

The wrinkles on a raisin result from a simple effect: As the pulp inside dries, the skin grows stiff and buckles to accommodate its shrinking size. Now, a team of researchers at MIT has discovered a way to harness that same principle in a controlled and orderly way, creating wrinkled surfaces with precise sizes and patterns.

This basic method, they say, could be harnessed for a wide variety of useful structures: microfluidic systems for biological research, sensing and diagnostics; new photonic devices that can control light waves; controllable adhesive surfaces; antireflective coatings; and antifouling surfaces that prevent microbial buildup.

A paper describing this new process, co-authored by MIT postdocs Jie Yin and Jose Luis Yagüe, former student Damien Eggenspieler SM ’10, and professors Mary Boyce and Karen Gleason, has been published in the journal Advanced Materials.

The process uses two layers of material. The bottom layer, or substrate, is a silicon-based polymer that can be stretched, like canvas mounted on a stretcher frame. Then, a second layer of polymeric material is deposited through an initiated chemical vapor deposition (iCVD) process in which the material is heated in a vacuum so that it vaporizes, and then lands on the stretched surface and bonds tightly to it. Then — and this is the key to the new process — the stretching is released first in one direction, and then in the other, rather than all at once.

When the tension is released all at once, the result is a jumbled, chaotic pattern of wrinkles, like the surface of a raisin. But the controlled, stepwise release system developed by the MIT team creates a perfectly orderly herringbone pattern. 

The size and spacing of the herringbone ribs, it turns out, is determined by exactly how much the underlying material was originally stretched in each direction, the coating’s thickness, and in which order the two directions are released. The MIT team has shown the ability to control the exact size, periodic spacing and angles in both directions for the first time.

The system is unusual in its ability to produce precisely controlled patterns without the need for masks or complex printing, molding or scanning processes, Gleason says. 

Controlling the Patterns

Fundamentally, “it’s the same process that gives you your fingerprints,” says Gleason, the Alexander and I. Michael Kasser Professor of Chemical Engineering. But in this case, precise control over the resulting patterns requires the iCVD process, which Gleason and her colleagues have been developing for years. This gives a high degree of control over the thickness of layers deposited, and also enables control of the surface chemistry of the coatings. 

Additionally, the iCVD method provides the high degree of adhesion that is needed to form buckled patterns. Without sufficient adhesion, the surface layer would simply separate from the substrate.

“One distinguishing feature of what we’re showing is the ability to create deterministic two-dimensional patterns of wrinkles,” such as a zigzag herringbone pattern, says Boyce, the Ford Professor of Engineering and head of MIT’s Department of Mechanical Engineering. “The deterministic nature of these patterns is very powerful and yields principles for designing desired surface topologies.”

“One important application is the measurement of ultra-thin-film material properties without knowing the thin-film thickness,” Yagüe says. The film’s material stiffness and thickness could be measured by analyzing the pattern, he says.

Many Potential Uses

Another possible application, the researchers say, is microfluidic devices such as those used to test for molecules in a biological sample, where tiny channels of precise dimensions need to be produced on a surface. These could potentially be used as sensors for contaminants, or as medical diagnostic devices. Another possible use is in the control of reflections or the wettability of a surface — making it attract or repel water, properties that depend both on the surface shape and the chemical composition of the material.

Such patterns can also be used to make surfaces adhere to each other — and in this case, the degree of adhesion can also be controlled. “You can dynamically tune the patterning — direct stretching or other actuation can be used to tune the pattern and corresponding properties actively during use,” Boyce says, even letting surfaces return to perfectly flat. This could, for example, be used to provide secure bonding with quick-release capability or to actively alter reflectivity or wettability. 

Many techniques have been used to create surfaces with such tiny patterns, whose dimensions can range from nanometers (billionths of a meter) to tens of micrometers (millionths of a meter). But most such methods require complex fabrication processes, or can only be used for very tiny areas. 

The new method is both very simple (consisting of just two or three steps) and can be used to make patterned surfaces of larger sizes, the team says. “You don’t need an external template” to create the pattern, says Yin, the paper’s lead author.

The predictability of the resulting patterns was a big surprise, members of the team say. “One of the amazing things is to note how beautifully the experiments and the simulation match,” Gleason says.

John Hutchinson, a professor of engineering and of applied mechanics at Harvard University who was not involved in this research, says, “Wrinkling phenomena are highly nonlinear and answers to questions concerning pattern formation have been slow to emerge.” He says the MIT team’s work “is an important step forward in this active area of research that bridges the chemical and mechanical engineering communities. The advance rests on theoretical insights combined with experimental demonstration and numerical simulation — it covers all the bases.”

The work was funded by the King Fahd University of Petroleum and Minerals in Saudi Arabia.

KEYWORDS: Research and Development

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

MIT News Office

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Paint and Coating Market Reports
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Paint and Coating Market Reports
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts



PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci voices from the top ebook

PCI webinar

Related Articles

  • anti-fouling technology

    Researchers Create ‘Smart’ Material With Antifouling Potential

    See More
  • Researchers Create Nanoscale Gold Coating With Largest-Ever Superlattice

    See More
  • Waterloo Institute for Nanotechnology

    Researchers Work to Create a Surface Coating that Will Kill COVID-19 on Contact

    See More

Related Products

See More Products
  • durability.jpg

    Increasing the Durability of Paint and Varnish Coatings in Building Products and Construction 1st Edition

  • Nanocoatings_150x225.gif

    Nanocoatings: Principles and Practice

  • laser tech.jpg

    Laser Technology: Applications in Adhesion and Related Areas

See More Products
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing