Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!
Paint and Coatings Additives

Bottom-Up Design Approach: Taking Another Look at Waxes for Cost Efficiency and Performance in Coatings

By Dr. Onome Agori-Iwe
pci0619-Wax-182757352-900.jpg
June 5, 2019

The top challenges facing the wax and additives industry today undoubtedly include environmental regulation concerns and sustainability considerations. Nevertheless, also present at the top of the list of challenges and concerns are cost and performance. The demand for high performance while still providing a low cost is indeed very relevant and important in today’s market.

In a recent study by Jiang et al,1 the authors discuss new polymer binder technologies developed for water-based architectural coatings. The new polymer binder technologies are essentially based on colloidal self-assembly of molecules designed to improve coating performance and reduce VOCs. Another name for this design approach, which involves the organization of molecules at an interface, is the bottom-up approach. Inherent in this approach is the challenge of directing the position of molecules over large areas. While there has been some progress in the development of new binder technologies based on self-assembly in coatings, one should also be aware that a bottom-up approach also exists for designing coatings with tailored surface functionality using wax additives. This approach may offer a more cost-efficient solution depending on the application since only a small amount, based on the total formula weight, is typically required (as low as 1-2 wt.%). Bottom-up design of coatings from an additive perspective involves proper choice of wax chemistry (which determines the surface-enhancing physical properties), as well as consideration of the mobility of the wax additive to the surface of the coating. Moreover, appropriate testing to prove performance (which can also be used as a development tool) is crucial in the bottom-up design of waxes in coatings that are both cost efficient and have a desired target performance.

 

Waxes – A Variety of Chemistries and Surface-Enhancing Benefits

Waxes include a variety of chemistries, including synthetic Fischer-Tropsch waxes (long-chain hydrocarbons), low-molecular-weight polymers, amides, and plant- and animal-derived wax esters such as carnauba wax and beeswax, respectively. The physical properties of waxes include melting (softening) points typically ranging from ~80 °C-170 °C as well as low-melt viscosity (high-melt flow index). Waxes are characterized as hard, solid materials. Moreover, materials like PTFE and polyurethane, although not waxes, can be utilized like waxes in a coating. Likewise, using blends of different materials (eg., PTFE and PE) broadens the spectrum of available surface-enhancing additives.

It is generally known that wax additives provide coating surface modification in the form of lubricity and slip, mar and scratch resistance, abrasion resistance, burnish resistance, water repellency, and anti-blocking. However, wax additives can also provide slip resistance via increased coefficient of friction (COF) for non-slip flooring applications, matting, texture effects, and even haptics for soft-touch coating applications.

The diverse surface-enhancing benefits of wax additives are related to their chemistry and physical properties. For example, Fischer-Tropsch (FT) synthetic waxes are relatively hard and crystalline, and have a molecular weight ~750-1,500 g/mol. FT waxes are economical surface modifiers used in packaging for lubricity, wood coatings for scratch resistance, and powder coatings for gloss reduction and hardness. Polyethylene (PE) waxes, however, typically have greater abrasion resistance and lubricity compared to FT waxes and are more crystalline and higher in molecular weight (~1,000-4,000 g/mol). Two types of PE waxes are typically used as wax additives – low-density and high-density PE – which differ in the amount of crystalline structure. Low-density PE (LDPE) has a more branched structure than high-density PE (HDPE) and therefore is much less crystalline and has a lower melting point than HDPE. PE waxes are the most universal wax type used in inks and coatings. Polypropylene waxes are typically higher in molecular weight than PE waxes, and as a result are more durable and resilient (tougher). They give good burnish and mar resistance in coatings and are also used to provide matting and texture effects. Like PE, depending on reaction conditions, PP waxes can be mostly branched or straight chain (low or high crystallinity, respectively). Using Ziegler-Natta and Metallocene catalysts, which control the stereochemistry and thus the orientation of each monomer/pendant group in a polymer chain, physical properties like melting point can be tailored for a specific application (since melting point is directly related to a polymer’s crystallinity, which is itself related to the packing and ordering of a polymer chain).

Some examples of the various types of waxes (including materials that behave like waxes but aren’t necessarily waxes) and their use in coatings is summarized in Table 1. Note that polyurethane beads are even listed in Table 1 as they, along with PMMA beads and cross-linked PDMS beads, are used to impart tactile properties such as rubbery feel or silky feel to a soft-touch coating. These beads can help make substrates such as plastics, wood, paper and glass feel luxurious (eg., interior automotive faux leather).

A summary of some wax types, their chemistries and applications in coatings
TABLE 1 » A summary of some wax types, their chemistries and applications in coatings.

 

Tailoring Surface Coating Properties Using Waxes

In order to utilize a bottom-up approach for tailoring the surface properties of a coating using wax additives, one must first ensure proper wetting/dispersion of the wax. Probably one of the most common issues a customer faces when testing out a new wax additive is proper incorporation of the dry wax into the coating. For powder coatings, proper wax dispersion requires sufficient energy during the melt-mix extrusion process (i.e., addition of the wax to the pre-mix). For a liquid coating, it is appropriate to use a high-shear disperser in the grind phase to ensure the wax is properly wetted. Likewise, one can use water-based dispersions of waxes or wax emulsions in their coatings.

Since the objective is to reliably predict and therefore tailor the surface properties of a wax additive in a coating, it is also important to consider the mechanism by which the wax will migrate to the surface of the coating. Waxes primarily stratify to a surface by one of two mechanisms – a blooming or a ball bearing mechanism. In a thermally cured coating containing a low-melting wax or a wax that is incompatible with the polymer binder, a blooming mechanism can occur in which the wax melts, cools and recrystallizes forming a thin, continuous layer at the top of the coating.2 In an air-dried liquid coating (solvent- or water-based, for example), a ball bearing mechanism is likely in which individual particles migrate to the coating surface. Figure 1 provides an illustration of wax particles both in the bulk and at the surface of a coating; some of the wax particles have migrated to the surface of the coating via a ball bearing mechanism.

Wax particles in the bulk and at the surface of a coating. Waxes protruding from the surface of the coating illustrate a ball bearing migration mechanism
FIGURE 1 » Wax particles in the bulk and at the surface of a coating. Waxes protruding from the surface of the coating illustrate a ball bearing migration mechanism.

Controlling the stratification process as well as the surface properties also necessitates control over the wax particle size, particle size distribution and the particle density. Specifications that result in reproducible particle sizes and distributions within a particular range for a given application, for example, ensure uniform gloss retention and appearance (including clarity and DOI) as well as uniform gloss reduction in matte and satin coatings. Furthermore, controlling particle size and distribution facilitates consistent performance such as abrasion resistance, lubricity and burnish resistance. Thus, the use of micronized waxes with a controlled average particle size (including the largest particle size designated D99 or D100, depending on the wax supplier) is utilized and measured via light scattering and NPIRI and Hegman gauges. Additionally, since wax particle densities typically range from 0.89-2.2 g/cc in a liquid coating, depending on the density of the continuous phase, particles may settle or float (note that in a powder coating, components of the coating have also been observed to stratify according to their density). Density is also an important consideration when dosing a wax additive manufactured by combining two or more materials (eg., melt blends, composites) into a liquid coating as the modified density of the additive will also impact the migration of the additive in a coating.3 Wax particle size also plays an important role in surface matting, as one would typically want to match the particle size to the thickness of the coating for effective matting.

 

Proving Performance – Scratch/Mar Resistance Test Methods

One of the most compelling ways to differentiate a well-designed and engineered additive from the competition is to provide end users (customers) with data – real-world and/or simulated, if possible. Real-world data implies that the promised performance has been tested in the field (or perhaps very closely approaches field testing). Simulated testing, if one can correlate it to real-world performance, can also be really useful for predicting material properties (especially when field testing may not be practical due to the length of time it takes, for example). And certainly, in a bottom-up design approach, one would want a reliable method for correlating surface performance with the specific additive chemistry and physical properties.

 

Nano-Scratch Testing Method

One very relevant and critical surface performance attribute in many coatings is scratch resistance. Scratch resistance is important for surface protection during manufacturing, shipping and handling of a coated substrate such as a metal can, for example. In a recent review of scratch and mar resistance methods in coatings by Osterhold,4 a correlation was found between a laboratory method for evaluating scratch resistance and a real-world field test. The laboratory method (nano-scratch method), which has also been described by Gregorovich et al,5 involves scratching a surface with an indenter (having a tip with a radius on the order of a few microns) to simulate marring. It is noteworthy to mention that although ‘marring’ and ‘scratch’ are frequently used interchangeably, damage to a surface caused by marring can be considered light scratching of a surface, while ‘scratch’ indicates more severe damage.4 Instruments used for nano-scratch testing apply a progressive load with an indenter to a coating, and the load that causes a fracture in the coating (known as the critical load) is recorded. Interestingly, when the critical load determined from a nano-scratch test was compared to the gloss reduction of an automotive clearcoat following a very-close-to-real-world field test for simulating damage during a car wash - called the Amtec test4 - a significant correlation was found. Certainly, one might conclude from these experiments that a car wash brush could potentially decrease the lifetime service of an automotive clearcoat.

Consider that one could possibly take this type of testing for scratch resistance of coatings a step further by using it as a method to reliably and predictably rank coatings dosed with a well-designed and engineered wax additive using a graphical method as described by Wong et al.6 Scratch hardness is estimated graphically by determining the slope of the normal load vs. the projected area of the indenter tip. The projected area of the tip can be calculated once the width of the scratch made by the indenter at a specific load is determined. A high-resolution microscope and/or an AFM could be used to measure the scratch widths for a series of coatings. The scratch hardness could potentially be used as a development tool to rank coatings dosed with various scratch-resistant wax additives. Moreover, it would be interesting to see if a real-world simulation, like the Amtec test, would correlate with this graphical method for determining scratch hardness.

 

Automated Pencil Scratch with a Linear Abraser for Reproducible Results

Another scratch test method that is used widely to assess mar and scratch in wood coatings is the pencil scratch test (ASTM D3363). This test is typically performed manually by holding a pencil with a particular hardness rating at an approximate 45-degree angle to the coating and pushing down in the forward direction on the coating to make a scratch. Visual inspection of the scratch after using a series of pencils with varying hardness allows one to assess scratch hardness (i.e., the pencil with the highest hardness rating that doesn’t leave a permanent mark on the surface is the pencil hardness). A well-trained, experienced user can certainly conduct such scratch tests and get good results. There is, however, another way to conduct such a test that is not user dependent. A linear abraser allows the user to control the amount of force applied during the measurement, the number of linear abrasion cycles, the stroke length, as well as the speed. If one is interested in conducting testing for development of a new wax additive, for example, this method can facilitate controlled and reproducible results. It is important to mention, however, that a method must be developed for the testing in which one decides on the best parameters for testing (i.e., scratch speed, amount of force, etc.) as the ASTM for pencil scratch doesn’t specifically give guidance on this. Nevertheless, once one determines the appropriate test conditions, one can use these same set of conditions to test an entire series of coatings, which is preferable for development work.

In a recent study, automated pencil scratch with a linear abraser was used to demonstrate enhanced surface performance in a water-based acrylic coating dosed with a composite wax additive composed of HDPE, PTFE, and nano-alumina with a Mohs hardness of 9.3 Coatings dosed with the HDPE/PTFE wax composite and the HDPE/PTFE/nano-alumina wax composite were evaluated with the automated pencil scratch method. At the same wax additive loading of just 1 wt%, pencil scratch hardness doubled from 3H to 6H. This is an example of how a proper method for evaluation of a surface property, such as scratch resistance, when coupled with a well-designed additive (based on the knowledge of the chemical and physical properties of the additive), can be useful in the bottom-up design approach for cost efficiency and performance in coatings. The additive in the study had a modified density that closely matched the density of the water-based coating. A formulated approach was used in the design of the additive by taking advantage of the synergistic effect of combining materials with desired target properties. The study also demonstrated that a simple dry blend of the wax components (present in the same proportion as the composite wax) did not give the same performance as the composite wax (i.e., wax components melt blended together). SEM and SEM-EDX analyses of cross-sections of coatings dosed with these additives provided snapshots of the mobility of the waxes in the coatings. Included in these snapshots was evidence that PTFE, when dosed by itself in a coating, concentrates in the bulk and at the bottom of the coating instead of at the surface of the coating. Cost efficiency of an additive is thus very much related to the mobility of the additive in the coating as it is imperative that the additive reaches the surface of the coating.

 

Conclusions

It is quite remarkable how a small amount of additive – a mere 1-2 wt.% on total formula weight – can make such a significant difference in coating surface performance including scratch and mar resistance, abrasion resistance, burnish resistance, and lubricity. By employing a bottom-up approach that includes the appropriate choice of wax chemistry (and therefore target physical properties), consideration of the migration ability of the wax (usually related to particle density), and proper testing to prove important surface properties such as scratch resistance, one can indeed successfully use waxes for cost efficiency and targeted performance in coatings. It’s time to take another look at waxes! 

 

For more information, contact Dr. Onome Agori-Iwe, e-mail oagoriiwe@gmail.com

 

References

1    Jiang, S.; Van Dyk, A.; Maurice, A.; Bohling, J.; Fasano, D.; Brownell, S. Design Colloidal Particle Morphology and Self-assembly for Coating Applications (2017). Ames Laboratory Accepted Manuscripts. 13.

2   Carroll, J.R.; Bradley, R.M.; Kalmikoff, A.I. Modern Paint & Coatings, Oct. 1993.

3   Agori-Iwe, O. 2018. Wax Additives Created with Composite Particle Technology for Efficiency and Performance. Southern Society for Coatings Technology. San Destin, Florida.

4   Osterhold, M. European Coatings Journal, 2018, No. 1, p 52.

5   Gregorovich, B.; Adamsons, K.; Lin, L. Progress in Organic Coatings, 2001, Vol 43, p 175.

6    Wong, M.; Moyse, A.; Lee, F.; Sue, H.J. Journal of Materials Science, 2004, Vol 39, p 3293.

 

KEYWORDS: waxes

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Dr. Onome Agori-Iwe, Contributing Writer, Hartsdale, NY

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Paint and Coating Market Reports
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Global Top 10 and PCI 25
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts



PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci voices from the top ebook

PCI webinar

Related Articles

  • 2k system

    A Novel Approach for Applying 2K Coatings to Improve Outcomes and Reduce Cost

    See More
  • axalta colors

    A Historical Look at the Influence of Science and Design on Automotive Color

    See More
  • Sustainability and Bio-based

    Lower-Carbon Micronized Waxes Enhance Performance in Coatings and Inks

    See More

Related Products

See More Products
  • Kevin-Biller-PC-BOOK.jpg

    Powder Coatings - Foundation for the Novice Formulator (ebook)

See More Products

Related Directories

  • Innospec Performance Chemicals

    Innospec is a global supplier of specialty chemicals for many different markets, including construction, emulsion polymerization, paint and coatings, polymers and waxes. Our innovative and responsible solutions cover a strong portfolio of additives and technically advanced solutions: rheology modifiers, anionic emulsifiers, wetting agents and dispersants.
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Manufacturing Division
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing