Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!

Elimination and Prevention of Foam in Energy- Cured Systems— Always a Balancing Act

March 27, 2001
Environmental regulations have led to the increasing popularity of energy-cured coatings and printing inks. Although there are a number of technical considerations with these formulations, this article will focus on the formation of foam bubbles, or air entrapment, which remains a major problem.

Solutions to these problems present considerable challenges to formulators, applicators, manufacturers and raw material suppliers. Several methods of reducing or eliminating foam bubbles in energy-cured systems do exist, including the following.

  • Lowering the viscosity

  • Increasing the degassing time

  • Selection of low-foaming coating ingredients

  • Heating the coating material

  • Low speed application

  • Addition of organic solvents

    However, many of these options are either undesirable, not technically feasible or limited due to the quality demands of the applied material. Nevertheless, some type of modification to the coating or ink formulation is necessary.

    Clearly it would be much easier if the simple addition of a paint additive, such as a deaerator, could significantly reduce or eliminate foam formation. The development of just such a deaerator — one that eliminates or prevents foam in energy-cured systems — is our subject.



Incorporation of Air

There are several opportunities for air to enter and become entrained in energy-cured systems. A primary source of entrained air is the production process itself, when all coating ingredients are blended by high-speed mixing for pigmented formulations or low-shear mixing for clear formulations.

Another major source of entrained air is the application process, for example, high-speed printing or spray application. Foam formation is particularly severe in applications characterized by the circulation of coating materials, such as in printing, roller coating or curtain coating. Foam problems multiply in high-speed applications with short curing times — printing, for example — that allow little time for the release of air.

Formation of Macro and Micro Foam

When discussing foam, it is common to distinguish between macro and micro foam. In both cases, air is entrained in the coating material, but at different locations. In the case of macro foam, air forms foam bubbles at the coating surface, stabilized by a surfactant double layer (foam lamella). In the case of micro foam, entrapped air is located in the coating film and is prevented from rising to the surface by high coating viscosity or additional surfactant, which acts as an anchor. Surfactants possess a high tendency toward foam stabilization because of the surfactant structure’s ability to orient itself at the air/liquid interface. By so doing, these foam-stabilizing substances form a stable surface film around the micro or macro bubble.1

Taking into consideration Stoke’s Law — which states that larger bubbles rise much faster to the surface than smaller bubbles — it becomes clear that micro bubbles rise very slowly due, in part, to their small radii. High coating viscosity further reduces the velocity of rising micro bubbles. And it is common to find high viscosities in energy-cured screen inks or roller-coated wood and furniture coatings.

The Ideal Deaerator

Naturally, an ideal deaerator for energy-cured coatings and inks should be able to eliminate and prevent both micro and macro foam. But this is only one part of the story. Most of the defoamers and deaerators for energy-cured systems currently available are able to destroy foam, but still cause compatibility problems. These compatibility problems manifest themselves either as turbidity or fish eyes in uncured film, or as craters and haziness in cured film. The consequence is poor quality of the applied coating or ink. The ideal deaerator for energy-cured systems, therefore, should strike an optimum balance between foam-destroying effectiveness and system compatibility.

The Search for the Ideal Deaerator Formulations

Several clear and pigmented energy-cured coatings and inks were prepared for the testing and evaluation of different chemical substances — deaerator candidates — and their subsequent modifications. These formulations were based on different types of acrylic oligomers used in the wood/furniture and printing ink industries, such as epoxy/polyester/polyether or oligoether acrylates. Depending on the type of formulation, curing was accomplished with a gallium and/or mercury lamp (120 W/cm) at different line speeds. For initial screening, 0.3% active matter of the chemical substances and their modifications were added. Based on these results, subsequent optimized formulations tested up to 1.0% of active deaerator.

Test Methods

Different test methods, such as foam and compatibility tests, provided evaluations of both the liquid coating or ink material and the cured film. In addition, static surface tension was measured by the duNuoy ring pull-off method and carried out with a Dynometer (BYK-Gardner/Germany). The static surface tension was recorded in mN/m.

Foam Test

The effectiveness of different chemical substances and their modification against micro and macro foam was tested and evaluated with a standardized “foam test.” After incorporation of the different substances into the coating material, each sample was stirred for 3 minutes at 3,000 rpm with a conventional lab dissolver (Getzmann/Germany). Immediately after stirring, a draw down (100 µm) on glass panels was prepared and cured via UV light according to the reactivity of the formulation. The evaluation of effectiveness was conducted both visually and by microscopy. A video camera documented the test results. Differentiation of test results was represented using a number scale from 1 to 6. The number ‘1’ indicated excellent effectiveness against micro or macro foam, and the number ‘6’, no effectiveness.

Compatibility of Liquid Coating Material

To evaluate compatibility, a Turbiscan apparatus measured transmission of a laser light through the liquid coating material, with higher turbidity indicating poor compatibility. Results were recorded on a scale ranging from 0% transmission of light (strong incompatibility) to 100% transmission of light (excellent compatibility).

Compatibility of the Applied Cured Film

In addition to evaluating the turbidity of the liquid coating material, we visually evaluated the applied cured film for turbidity, crater or fish-eye formation, as additional indicators of compatibility. To test the optical appearance, drawdowns (100 µm) on glass were prepared and evaluated after curing. The number scale from 1 to 6 was again used for evaluation, with the number ‘1’ indicating the best result, and ‘6,’ the worst.

Testing of Substance Classes

As a general starting point, different chemical substances were tested for their ability to eliminate micro and macro foam.

Substance A: polyacrylates Substance B: fluoro-modified polysiloxanes Substance C: polyethers Substance D: polar-modified polysiloxanes Substance E: polysiloxanes

Figures 2–6, taken by way of 2X magnification microscopy, corresponding to Substances A–E show the results of the foam test and the effectiveness of each substance as a foam eliminator. (Figure 1 is a control without additive.)

Comparing results displayed in Figures 1-6, it became obvious that the most promising results were obtained from Substance Class A (Figure 2). Therefore, Substance Class A was selected as the basic chemistry for further work toward optimization and increased efficacy.

Modification of Substance Class A

Different chemical structures are possible with Substance Class A. First, chain length and molecular weight of the backbone structure were varied. The variations obtained were then tested for effectiveness and compatibility in energy-cured coatings and inks.

Variation of the Molecular Weight

Figures 7, 8 and 9 show the foam elimination effectiveness of three chemical structures based on Substance Class A (2X magnification). These products differ in molecular weight of their backbone.

In addition to the foam test, the compatibility of these three substances was evaluated as well. Table 1 summarizes the test results.

The most promising foam elimination performance is obtained from the substance with a medium molecular weight backbone (Substance A.2). Shorter (Substance A.1) or longer (Substance A.3) backbone structures lead to less effectiveness against micro and macro foam, greater turbidity and lower compatibility. Substance A.2 was selected for further modifications, focused mainly on improving compatibility with the cured coating material.

Variation of the Modification

In general, varying the organic modification of the substance backbone influences compatibility with the coating material. This modification can be more polar/hydrophilic or more non-polar/hydrophobic in character. For further testing, different substances were synthesized based on Substance A.2, but linked with different organic modifications being either more or less polar. These substances were tested for foam elimination and compatibility. Figures 10, 11, 12, and 13 display the results of the foam test (2X magnification). Table 2 gives an overview, with additional test results on compatibility.

Test Results

Figure 13 and Table 2 demonstrate that the best combination of effectiveness and compatibility was obtained with Substance A.2.4. This substance provides excellent defoaming and deaeration (foam test: 1), while at the same time achieving high compatibility (light transmission value: 96%; optical appearance: 1). Substances A.2.1 and A.2.3 have more polar modifications, but this did not lead to an improvement in compatibility (optical appearance: 5).

Instead, the opposite is true, as can be seen with Substances A.2.2 and A.2.4. These substances were characterized by less polar modifications leading to improvement in compatibility (optical appearance: 1 and 2; transmission: 100% and 96%). However, polarity of the modification is again only one side of the story. The type of modification is important as well. A non-polar polyether modification (Substance A.2.2) improved compatibility but, at the same time, tremendously reduced effectiveness against micro and macro foam. In contrast, Substance A.2.4, characterized by a different kind of organic modification, provides an excellent balance of high effectiveness and compatibility.

Based on the described test results the ideal chemical substance to reduce and eliminate micro and macro foam in energy-cured coatings and inks, and maintain compatibility with the coating or ink system, is based on a polyacrylate of medium molecular weight, modified with relatively non-polar organic groups.

Conclusion

This work has shown that designing a specific chemical structure leads to an additive capable of reducing and eliminating micro and macro foam in energy-cured coatings and inks. The vital parameter of this product is its balance of high effectiveness against micro and macro foam and the highest possible compatibility with the coating or ink formulation. Modified polyacrylates are able to reach this balance. However, this additive class enables the formulator to eliminate micro or macro foam in energy-cured coatings and inks without such negative side effects as turbidity, crater or fish-eye formation. In addition, the additive will not negatively influence other properties such as recoatability, reprintability or glueability. Promising results have been obtained in a variety of energy-cured coating and ink formulations using different application techniques: spray, roller, curtain coating and silk screen.

For more information on eliminating foam, contact Tego Chemie Service USA, PO Box 1299, Hopewell, VA 23860; phone 800/446.1809; fax 804/541.2783; e-mail frances.eggleston@us.goldschmidt.com.

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Global Top 10 and PCI 25
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Paint and Coating Market Reports
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts

pci academy

PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci case ebook

PCI webinar

Related Articles

  • Elimination and Prevention of Foam in Energy- Cured Systems— Always a Balancing Act

    See More
  • AMPP Applauds Congressional Support of the Bridge Corrosion Prevention and Repair Act.jpg

    AMPP Applauds Congressional Support of the Bridge Corrosion Prevention and Repair Act

    See More
  • Texas Congressman Sponsors Corrosion Prevention Act

    See More

Related Products

See More Products
  • durability.jpg

    Increasing the Durability of Paint and Varnish Coatings in Building Products and Construction 1st Edition

  • handbook-of-adhesives-and-s

    Handbook of Adhesives and Sealants, Volume 1

See More Products
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Manufacturing Division
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing