Painting & Coating Industry (PCI) logo Powder coating summit logo
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • MATERIALS
  • TECHNOLOGIES
  • FINISHING
  • RESOURCES
  • EVENTS
  • DIRECTORIES
  • EMAGAZINE
  • CONTACT
cart
facebook twitter linkedin youtube
  • NEWS
  • Latest News
  • Market Trends & Reports
  • Price Alerts
  • Subscribe to eNewsletters
  • Global Top 10/ PCI 25
  • Weekly Featured Article
  • COATLE Word Game
  • PRODUCTS
  • Product News
  • Must See Products and Services
  • MATERIALS
  • Additives
  • Resins/Polymers
  • Pigments
  • Equipment
  • Distributors
  • TECHNOLOGIES
  • Adhesives
  • Architectural Coatings
  • Industrial Coatings
  • Nanotechnology
  • Powder Coatings
  • Solventborne
  • Special Purpose Coatings
  • Sustainability
  • UV Coatings
  • Waterborne
  • Waterborne
  • FINISHING
  • Finishing News
  • Finishing Technologies
  • Finishing Equipment
  • RESOURCES
  • Columns
  • Blogs
  • Coatings Supplier Handbook
  • Podcasts and Videos
  • PCI Store
  • eBooks
  • Sponsor Insights
  • White Papers
  • COATLE Word Game
  • Columns
  • Ask Joe Powder
  • Did you know?
  • Distribution Dive
  • Focus on Canada
  • Formulating With Mike
  • Innovation Insights
  • Moody's Coatings Conundrums
  • Powder Coating Perspectives
  • Target the Market
  • TiO2 Insider
  • Blogs
  • Editor's Viewpoint
  • Industry Insights
  • Podcasts and Videos
  • COAT-IT! Podcast
  • Videos/PCI TV
  • EVENTS
  • Coatings Trends & Technologies Summit
  • Paint and Coatings Academy
  • Webinars
  • Calendar of Events
  • Lifetime Achievement Award
  • DIRECTORIES
  • Buyer's Guide
  • Equipment Directory
  • Materials Directory
  • EMAGAZINE
  • Current Issue
  • eMagazine Archive
  • China Issue Archive
  • Editorial Advisory Board
  • CONTACT
  • Contact Us
  • Advertise
  • Subscribe to eMagazine
  • Subscribe to eNewsletters
Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Price Alerts
    • Subscribe to eNewsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
    • FINISHING
      • Finishing News
      • Finishing Technologies
      • Finishing Equipment
    • RESOURCES
      • Columns
        • Ask Joe Powder
        • Did you know?
        • Distribution Dive
        • Focus on Canada
        • Formulating With Mike
        • Innovation Insights
        • Moody's Coatings Conundrums
        • Powder Coating Perspectives
        • Target the Market
        • TiO2 Insider
      • Blogs
        • Editor's Viewpoint
        • Industry Insights
      • Coatings Supplier Handbook
      • Podcasts and Videos
        • COAT-IT! Podcast
        • Videos/PCI TV
      • PCI Store
      • eBooks
      • Sponsor Insights
      • White Papers
      • COATLE Word Game
    • EVENTS
      • Coatings Trends & Technologies Summit
      • Paint and Coatings Academy
      • Webinars
      • Calendar of Events
      • Lifetime Achievement Award
    • DIRECTORIES
      • Buyer's Guide
      • Equipment Directory
      • Materials Directory
    • EMAGAZINE
      • Current Issue
      • eMagazine Archive
      • China Issue Archive
      • Editorial Advisory Board
    • CONTACT
      • Contact Us
      • Advertise
      • Subscribe to eMagazine
      • Subscribe to eNewsletters
    Paint and Coating PigmentsPaint and Coating EquipmentManufacturing Equipment

    Chemical and Physical Properties of Inorganic Pigments

    as They Relate to Coatings Dispersions

    By Stephanie Shira
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    Chemical and Physical Properties of Inorganic Pigments
    November 1, 2015

    Inorganic pigments play double-duty as fillers that provide a greater benefit than simple coloration of a formulation; they also impact physical properties of the film during application and throughout the product lifecycle. Pigments in coatings protect the resins and binders from electromagnetic or thermal degradation due to their reflectance of short-wave IR radiation, which also helps to keep the materials containing said pigments cooler.1

    Why We Use Pigments

    Before we can understand best practices for dispersing materials containing pigments, it is important to understand what a pigment is, and the chemical and physical reasons why we use pigments. Inorganic pigments are transition metal complexes,2 primarily oxides of crystalline or semi-crystalline repeating units of ceramic crystal lattice structure.

    The d-orbital of the metal ions is responsible for a multitude of inorganic pigment properties, including color, reactivity, strength (as in Mohs hardness) and weatherability. Pigments are unique as fillers in that they are composed of transition metals surrounded by ligands (functional groups). The way in which the d-orbital of the metal ion interacts with the various ligands to which it is bonded also influences pigment properties; ligand substitution results in modified pigment characteristics.

    As an interesting aside, the metal ion-ligand coordination complexes of pigments used in coatings function (that is to say, provide a visible output color) much like light-harvesting complexes in photosynthetic pigments. Drawing from the Stark-Einstein law, we will take this full circle. The law states that an absorbed photon will initiate a primary chemical or physical reaction within the system.3 For coating pigments, this means that the d-orbital of the transition metal experiences excitation; the degree to which this excitation increases the energy gap dictates corresponding perceived color of the material. For example, the transition metal Vanadium can form complexes of four different ionization states (i.e., V2+, V3+, V4+, V5+), which offer pigments of different hues from purple (V2+) to yellow (V5+).4

    Jochen Winkler stated in Dispersing Pigments and Fillers,“Pigment agglomerates are held together by London-Van der Waals interactions. … at least a tenfold amount of energy is needed to disrupt chemical rather than physical bonds.”5

    That is to say, to reduce agglomerates to aggregates requires one-tenth the energy of reducing aggregates to primary particles; aggregates are chemically bound. Surfactants physically bond to aggregates/primary particles and prevent the reformation of pigment agglomerates by disruption of the London-Van der Waal forces. It must be noted that the geometry of the particles plays a role in the extent to which these forces are felt over a specific distance. Surface defects and aspect ratios other than one result in an increased surface area-to-volume ratio, which entails a greater Van der Waal force of attraction than simple spheres; the probability of the geometry leading to mechanical interlocking is also increased.

    Understanding Dispersion

    Dispersion is a physical process that tends to increase the entropy of a system. A poorly stabilized dispersion will tend to flocculate; a state that decreases the potential number of conformations of the system (i.e., reduced entropy or randomness). This is largely due to the randomized Brownian motion of the dispersed particles, which are attracted (i.e., tend to agglomerate) via short-range London-Van der Waal forces.

    For adequate dispersion it is essential that the surface tension of the liquid(s) be less than the surface free energy of the pigment (and other solids, such as fillers). If a specific solvent, resin or other liquid is to be used with a solid that it does not have an affinity for -in the sense of it being difficult to incorporate and wet out -surfactants are utilized to mitigate de-wetting and prevent floccules from forming.

    A key requirement for dispersing pigments (or any solids, for that matter) is that the solid has a higher surface tension than the liquid it is being introduced into. For solids that have prohibitively low surface tensions, additives can be added that lower the surface tension of the liquid components, thereby allowing for improved wetting characteristics. This phenomena is dictated by the Young equation:6

    γs = γsl + γl * cosθ 

    Where:

    γs = free surface energy of the solid

    γsl = interfacial energy between the solid and
    liquid phase

    γl =surface tension of the liquid phase

    θ = contact angle between the solid and liquid phase

    The smaller θ, the more readily the pigment will wet. This assumes a system of solid-binder organization; more often than not there are additional liquids or dissolvable solids in the system to assist with dispersion and prevent flocculation. When this is the case, the governing equations are not so simple, due to the additional interactions created by these materials at the pigment-matrix interface - in other words, the boundary surface (Figure 1). To determine the actual properties of the dispersion, two interfaces must now be considered: the solid-sorbed (pigment-boundary surface) and boundary surface-matrix (sol gel-liquid) interactions.

    These inter-molecular forces can be overcome with the addition of surface-active additives, which can operate via charge stabilization to electrostatically prevent flocculation, or via steric (entropic) stabilization, which physically hinders pigment movement and prevents re-agglomeration.

    Sufficient work (energy) must be done (applied) to the system to ensure that (1) the pigment powder is fully wetted with solvent/resin, (2) agglomerates are reduced to aggregates and primary particles, and (3) the surfactant is incorporated and homogenized such that the system reaches an energetically stable equilibrium that is deleterious to flocculation or settling.5

    Dry pigment powders can be modified via surface coatings to provide specific traits to the end product, or to improve upon the ease of manufacturing coatings containing them. As an example, titanium dioxide can be coated with polysiloxanes (commonly, silicone oils) to modify the compressive strength and compressibility of the pigment.5

    For the purpose of dispersing pigments, the Hamaker constant of the selected surface treatment should be optimized to the complete formulation. A low Hamaker constant surface treatment will yield a dispersion with low agglomerate strength. However, when not under agitation and allowed to sit for an extended period of time, it will tend to flocculate dramatically (simple agitation will re-suspend the particles). A higher Hamaker constant surface treatment will lend “favorable colloid-chemical properties,” but must be utilized at higher loadings, to ensure “good dispersibility.”5

    Today’s modern pigments for the coating manufacturer are available in specific particle size and tightness ranges; reduction of particle size (i.e., severing chemical bonds) is not the main goal of pigment dispersion, but rather deagglomeration of pigment particles loosely bound by residual moisture remnant from the original particle size reduction.

    When formulating pigmented coatings, pigments are purchased pre-milled in a dry, cake-like form. The pigment manufacturer reduces the size of the pigment particles by milling them for many hours or days on a 3-roll mill or similar machinery. The pigment is then dried to remove the majority of the moisture; some solvent remains entrapped between the agglomerates, due to capillary forces and wetting phenomena, causing the pigment to “cake” together. When the pigment is added to the coating formulation, or a solvent pre-dispersion, the dry “cake” is quickly broken apart into coarse grains due to the high shear created by the disperser. What remains are agglomerates - which can be further broken up with a reasonable energy input - and aggregates, which would require at least a tenfold energy input to further reduce to primary particle size.

    To reduce the energy, time and labor cost associated with pigment attrition, the particles should be completely wetted (Figure 2).

    Choosing the Right Equipment

    Selecting the right equipment will positively impact the quality of the mixed product; blade selection is key for proper dispersion. For a highly pigmented, low- to mid-viscous product, a dispersion blade with large, higher-vane teeth will provide a good balance of high shear and high flow (Figure 3). This creates a flow regime in which agglomerates are impacted at high speed by the blade, created by the high speed and torque of the rotating shaft. The particles also impact one another at a velocity sufficient to break up agglomerates and reduce the pigment to its milled particle size or smaller.

    Shearing the pigment particles is essential to the reduction of aggregates, while high flow ensures that the batch is turned over rapidly, allowing for a narrow distribution of particle size. If the through-flow is insufficient, the pigment in the vicinity of the blade is ground while the pigment around the sidewall and corner of the tank bottom remains unground. A dual-shaft disperser with independently driven shafts provides excellent batch turnover and high shear. When the dual shafts are rotating in the same direction, they can be considered to be running opposite in direction where the high-shear blades overlap (Figure 4). In other words, the dispersion blades are shearing the material in an opposing parallel motion, effectively doubling the shear rate and providing a higher feet per minute (FPM) tip speed. Figure 5 shows a dual-shaft twin motor disperser with four overlapping high-shear dispersion blades.

    Conclusion

    Consideration of not only a formulation, but also of the multitude of interactions between components is important when determining the proper dispersion equipment for the task. Examination of chemical and physical properties of constituents, and potential reaction by-products can result in customized equipment specialized to an exact process. 

    References

    1  http://www.pcimag.com/articles/86037-complex-inorganic-color-pigments-durable-pigments-for-demanding-applications

    2  http://chemwiki.ucdavis.edu/Inorganic_Chemistry/Coordination_Chemistry/Ligands

    3  http://www.britannica.com/science/photochemical-equivalence-law

    4  http://www.compoundchem.com/2014/03/05/colours-of-transition-metal-ions-in-aqueous-solution/

    5  Winkler, J. Dispersing Pigments and Fillers. Hannover: Vincentz Network, 2012. Print.

    6  T. S. Chow. Wetting of rough surfaces. Journal of Physics: Condensed Matter, (1998) 10 (27): L445.

    KEYWORDS: dispersions Inorganic Pigments paint mixers

    Share This Story

    Looking for a reprint of this article?
    From high-res PDFs to custom plaques, order your copy today!

    By Stephanie Shira, Applications Engineer | MYERS Engineering, Inc., Bell, CA

    Recommended Content

    JOIN TODAY
    to unlock your recommendations.

    Already have an account? Sign In

    • PCI-0724-Global10-Feature-1440.png

      2024 Global Top 10: Top Paint and Coatings Companies

      Who ranks on top? PCI’s annual ranking of the top 10...
      Global Top 10 and PCI 25
      By: Courtney Bassett
    • PCI-0724-PCI25-Feature-1440.png

      2024 PCI 25: Top Paint and Coatings Companies

      PCI's annual ranking of the top 25 North American paint...
      Paint and Coating Market Reports
      By: Courtney Bassett
    • pci1022-Kinaltek-Lead-1170.jpg

      A Novel Pigment Production Technology

      Following an extensive R&D program that demonstrated...
      Paint and Coating Pigments
      By: Jawad Haidar and Nitin Soni
    You must login or register in order to post a comment.

    Report Abusive Comment

    Subscribe For Free!
    • eMagazine
    • eNewsletter
    • Online Registration
    • Subscription Customer Service

    The Coatings Minute: Your Inside Look at PCInnovations

    The Coatings Minute: Your Inside Look at PCInnovations

    The Coatings Minute: Print Returns with PCI’s New Showcase Issue

    The Coatings Minute: Print Returns with PCI’s New Showcase Issue

    The Coatings Minute: Why Industry News Matters More Than Ever

    The Coatings Minute: Why Industry News Matters More Than Ever

    CTT Registration Now Open

    CTT Registration Now Open

    More Videos

    Sponsored Content

    Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

    close
    • Modern arapartment complex painted in bright colors.
      Sponsored byEPS - Engineered Polymer Solutions

      Architectural Polymers Leading the Way in Coatings Innovation

    • paint sprayer in a workshop
      Sponsored byallnex

      Enabling Performance and Compliance: allnex Introduces a New Line of VOC Exempt Solvent-Borne Resins

    Popular Stories

    No. 3 AkzoNobel

    AkzoNobel to Close Two Manufacturing Sites

    A collage of products using non-PFAS

    A Surge in Non-PFAS Releases

    Default Aerospace Image

    PPG Plans Major Aerospace Facility



    PCI Buyers Guide

    Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

    Start your RFP

    Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

    Find Suppliers

    Events

    September 3, 2025

    Coatings Trends & Technologies Summit

    The Coatings Trends & Technologies (CTT) Summit is an annual conference for both liquid and powder coatings formulators and manufacturers to discuss innovations in coatings technology. This event combines high-quality technical presentations, a resource-rich exhibit hall, and dedicated networking opportunities to connect scientific minds, foster innovation, and cultivate game-changing new ideas!

    January 1, 2030

    Webinar Sponsorship Information

    For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

    View All Submit An Event

    Poll

    Longest-running laboratory experiment

    What is the longest-running laboratory experiment?
    View Results Poll Archive

    Products

    CTT Summit Short Courses (Live 9/3/25)

    Coatings Trends & Technologies Summit is expanding its offerings with four short courses. These short courses will offer an extensive day of interactive learning.

    See More Products
    pci  webinar april 2025

    PCI CASE EBOOK

    Related Articles

    • pci0418-LanXess-Lead-900.jpg

      Hematite Pigments with Special Chemical and Physical Properties

      See More
    • LANXESS’ Head of Inorganic Pigments Discusses Iron Oxide Market and Becoming Climate Neutral by 2040

      LANXESS’ Head of Inorganic Pigments Discusses Iron Oxide Market and Becoming Climate Neutral by 2040

      See More
    • Diving Into the Inorganic Pigments Market

      Diving Into the Inorganic Pigments Market

      See More

    Related Products

    See More Products
    • auto-paints-and-coatings

      Automotive Paints and Coatings, 2nd Edition

    See More Products
    ×

    Keep the info flowing with our eNewsletters!

    Get the latest industry updates tailored your way.

    JOIN TODAY!
    • RESOURCES
      • Advertise
      • Contact Us
      • Directories
      • Store
      • Want More
    • SIGN UP TODAY
      • Create Account
      • eMagazine
      • eNewsletters
      • Customer Service
      • Manage Preferences
    • SERVICES
      • Marketing Services
      • Reprints
      • Market Research
      • List Rental
      • Survey & Sample
    • STAY CONNECTED
      • LinkedIn
      • Facebook
      • Youtube
      • X (Twitter)
    • PRIVACY
      • PRIVACY POLICY
      • TERMS & CONDITIONS
      • DO NOT SELL MY PERSONAL INFORMATION
      • PRIVACY REQUEST
      • ACCESSIBILITY

    Copyright ©2025. All Rights Reserved BNP Media.

    Design, CMS, Hosting & Web Development :: ePublishing

    Painting & Coating Industry (PCI) logo Powder coating summit logo
    search
    cart
    facebook twitter linkedin youtube
    • Sign In
    • Create Account
    • Sign Out
    • My Account
    Painting & Coating Industry (PCI) logo Powder coating summit logo
    • NEWS
      • Latest News
      • Market Trends & Reports
      • Price Alerts
      • Subscribe to eNewsletters
      • Global Top 10/ PCI 25
      • Weekly Featured Article
      • COATLE Word Game
    • PRODUCTS
      • Product News
      • Must See Products and Services
    • MATERIALS
      • Additives
      • Resins/Polymers
      • Pigments
      • Equipment
      • Distributors
    • TECHNOLOGIES
      • Adhesives
      • Architectural Coatings
      • Industrial Coatings
      • Nanotechnology
      • Powder Coatings
      • Solventborne
      • Special Purpose Coatings
      • Sustainability
      • UV Coatings
      • Waterborne
      • FINISHING
        • Finishing News
        • Finishing Technologies
        • Finishing Equipment
      • RESOURCES
        • Columns
          • Ask Joe Powder
          • Did you know?
          • Distribution Dive
          • Focus on Canada
          • Formulating With Mike
          • Innovation Insights
          • Moody's Coatings Conundrums
          • Powder Coating Perspectives
          • Target the Market
          • TiO2 Insider
        • Blogs
          • Editor's Viewpoint
          • Industry Insights
        • Coatings Supplier Handbook
        • Podcasts and Videos
          • COAT-IT! Podcast
          • Videos/PCI TV
        • PCI Store
        • eBooks
        • Sponsor Insights
        • White Papers
        • COATLE Word Game
      • EVENTS
        • Coatings Trends & Technologies Summit
        • Paint and Coatings Academy
        • Webinars
        • Calendar of Events
        • Lifetime Achievement Award
      • DIRECTORIES
        • Buyer's Guide
        • Equipment Directory
        • Materials Directory
      • EMAGAZINE
        • Current Issue
        • eMagazine Archive
        • China Issue Archive
        • Editorial Advisory Board
      • CONTACT
        • Contact Us
        • Advertise
        • Subscribe to eMagazine
        • Subscribe to eNewsletters