Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Finishing News
    • Price Alerts
    • Subscribe to Newsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Finishing Articles
    • Finishing Technologies
    • Finishing Equipment
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
  • RESOURCES
    • Columns
      • Did you know?
      • Distribution Dive
      • Formulating With Mike
      • Innovation Insights
      • Powder Coating Perspectives
      • TiO2 Insider
    • Blogs
      • Editor's Viewpoint
      • Industry Insights
    • Coatings Supplier Handbook
    • Podcasts and Videos
      • COAT-IT! Podcast
      • Videos/PCI TV
    • PCI Store
    • Classifieds
    • eBooks
    • Sponsor Insights
    • White Papers
    • COATLE Word Game
  • EVENTS
    • Coatings Trends & Technologies Summit
    • Paint and Coatings Academy
    • Webinars
    • Calendar of Events
    • Lifetime Achievement Award
  • DIRECTORIES
    • Buyer's Guide
    • Equipment Directory
    • Materials Directory
  • EMAGAZINE
    • Current Issue
    • eMagazine Archive
    • China Issue Archive
    • Editorial Advisory Board
  • CONTACT
    • Contact Us
    • Advertise
    • Subscribe to eMagazine
    • Subscribe to Newsletters
  • SIGN UP!
Paint and Coating PigmentsPaint and Coating EquipmentTesting, Monitoring &Tools

Advancing Material Characterization of Organic Pigments

By Rojin Belganeh, William Pipkin
pci0418-Frontier-180829863-900.jpg
April 20, 2018

Organic pigments are widely used in paint and ink formulations. The analysis and structure elucidation of organic pigments are challenging because they are not only insoluble in organic solvents but also many of them have similar structures. All the past methodologies for determination of organic pigments are based on solvent extraction, filtration and concentration. These traditional techniques are cumbersome, time consuming and suffer from analyst-to-analyst variability while producing data of limited value.

 

Solving Analytical Challenges

Frontier Py-GC/MS offers a revolutionary solution for analyzing organic pigments in a complex matrix in the paint, ink and coatings industries. Samples are analyzed directly; no pretreatment such as solvent extraction is necessary. Pyrolyzates are separated on a high-resolution capillary column and identified using both spectral (MS) and retention (GC) data. This technique can be used both qualitatively and quantitatively, and allows multiple and customized analysis on the same sample.

 

“Method Map” for Analyzing Organic Paint Pigments

We have developed a series of techniques referred to as the “method map” to chemically characterize organic paint pigments using the EGA/PY-3030D multifunctional pyrolyzer system in conjunction with a benchtop GC/MS. These techniques are applicable for virtually any organic materials from volatiles to high-molecular-weight polymers. In fact, the technique provides the scientist with two simple steps for determining the composition of any unknown sample.

The first step when developing a method using this technique is to perform an Evolved Gas Analysis (EGA). The sample is dropped into the furnace, which is at a relatively low temperature. The furnace is then programmed to a much higher temperature. Compounds “evolve” from the sample as the temperature increases. A plot of detector response versus furnace temperature is obtained. The EGA example in Figure 1 contains two thermal zones of interest.

Example of an EGA Thermogram

FIGURE 1 » Example of an EGA Thermogram1.

The EGA thermogram is then used to determine the next step in the evolution of the analytical method. In the example above, one can learn about the ‘volatiles’ in the sample by simply introducing the sample at 300 °C – only the compounds evolving below 300 °C will come out from the sample and be transported to the head of the column and analyzed. If there is interest in both the ‘volatile’ fraction and the higher-boiling compounds, this can be done in two steps and it may be necessary to add a micro-cryo trap. The micro-cryo trap refocuses the volatile analytes of interest at the head of the column so that the full separating power of the column can be utilized. First, the volatile compounds are thermally extracted by dropping the sample into the furnace, which is at 300 °C. The volatiles collect at the head of the column and are chromatographically separated. During the GC analysis of the volatiles, the sample is lifted out of the furnace. Upon completion of the GC run, the GC oven is reset and the pyrolyzer furnace temperature is raised to 550 °C. The sample is dropped a second time into the furnace for pyrolysis. The pyrolzates are trapped at the head of the column and subsequently separated.

The Pyrolyzer has a variety of applications in the paint and coatings industry. This technical application note details the “method map” methodology for some organic paint pigments.

 

Experimental

In this work, the Frontier Py-GC/MS analysis was used for analyzing relatively large-molecular-weight (MW approx. 1,000), nonvolatile pigments including condensation disazo pigments having similar structures, azo lake pigments and phthalo-cyanine pigments.

The first step in characterizing the organic pigments was the EGA technique. The EGA-MS was performed by programming the furnace from 100-600 °C at 20 °C/min.

The second step was to analyze the thermal zones of interest obtained from EGA thermograms. Pyrolysis-GC/MS at 600 ºC were performed on 35 organic pigments using Py-GC/MS. F-Search (Frontier search engine with four unique libraries) was used to create the organic pigment library and process the MS sample data. The spectral information from the Py-GC/MS analysis was incorporated into a searchable MS library using Frontier F-Search engine. Additional organic pigments can easily be added. Such a “pigment” library can be used to identify pigments in an ‘unknown’ sample.

 

Results and Discussion

The results obtained by the EGA-MS and Py-GC/MS analysis of Pigment yellow 93 and Pigment yellow 94 are shown in Figures 2 and 3. The molecular structures of these two pigments are similar. This data was used to construct a database to identify unknown pigments that have similar structures. When analyzing samples containing multiple pigments, the Py-GC/MS is extremely useful since the pyrolyzates of each pigment can be separated, identified and quantitated. The detailed information provided by this technique (compound’s name, structure and molecular weight), along with no sample preparation and solvents required, makes PY-GCMS a promising analytical tool in this industry to make difficult challenges simple.1

Structure of Pigment 93 and Pigment 94, pyrograms and identification of major peaks

FIGURE 2 » Structure of Pigment 93 and Pigment 94, pyrograms and identification of major peaks.

EGA thermogram of Pigments 93 and 94

FIGURE 3 » EGA thermogram of Pigments 93 and 94.

 

Conclusion

The Multi-Shot Pyrolyzer provides many advantages and immediate quality improvements in a coatings laboratory. Virtually any material (liquid or solid) can be chemically characterized using this technique. The unit guarantees reproducibility and accuracy where every facet of the system is designed to ensure reliability and data quality. All surfaces in contact with the sample are quartz or deactivated stainless steel. There is no transfer line and no cross contamination. The system also increases laboratory productivity, as sample preparation takes less than five minutes, and the low mass ceramic furnace heats and cools in record time for efficient and continuous sample analysis. This technique requires a small amount of sample, which reduces the cost of sample shipping, handling and disposal. In addition, no solvent is required when analyzing a sample. 

 

References

1   Frontier Laboratories Ltd. 1-8-14 Saikon, Koriyama, Fukushima 963-8862 JAPAN. Phone: (81)24-935-5100. Fax: (81)24-935-5102. http://www.frontier-lab.com.

 

KEYWORDS: Organic Pigments testing

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Rojin Belganeh, Technical and Marketing Director, Frontier Laboratories Ltd., Fukushima, Japan

William Pipkin, President, ATRq, Orem, UT

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • pci1022-Kinaltek-Lead-1170.jpg

    A Novel Pigment Production Technology

    Following an extensive R&D program that demonstrated...
    Paint and Coating Pigments
    By: Jawad Haidar and Nitin Soni
  • pci global top 10

    2025 Global Top 10: Top Paint and Coatings Companies

    The following is PCI’s annual ranking of the top 10...
    Global Top 10 and PCI 25
    By: Courtney Bassett
  • 2025 pci 25

    2025 PCI 25: Top Paint and Coatings Companies

    PCI's annual ranking of the top 25 North American paint...
    Paint and Coating Market Reports
    By: Courtney Bassett
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eMagazine
  • Newsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • colorful building exterior
    Sponsored byDow

    Insights into Exterior Architectural Coating Degradation: Bridging Accelerated and Natural Weathering

  • digital pigments
    Sponsored bySiltech

    The Fourth Dimension of Silicon: Siltech Q Resins

Popular Stories

Company News

What the AkzoNobel–Axalta Merger Means for the Future of Coatings

AkzoNobel and Axalta Headquarters

AkzoNobel and Axalta Announce $25 Billion Merger

Wacker logo

WACKER Plans More Than 1,500 Job Cuts



PCI Buyers Guide

Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

Start your RFP

Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

Find Suppliers

Events

September 4, 2025

N-Butylpyrrolidone (NBP) as a Green Solvent to Replace N-Methylpyrrolidone (NMP) in Industrial Coating Applications

ON DEMAND: EPA published a regulation proposal around N-methylpyrrolidone (NMP) in June 2024 to ban or limit NMP in many applications, such as paints and coatings and their removers. N-butylpyrrolidone (NBP) is a powerful and versatile solvent for a variety of industries looking for alternatives to substance of very high concern (SVHC)-listed solvents.

March 24, 2026

The Manufacturing & Automation eXchange (MAX)

MAX presents a rare opportunity to observe the full scope of manufacturing in one environment. From systems integration and materials handling to automation, quality, safety, and packaging, each discipline is represented through live, operational displays. By experiencing these technologies side by side, as they are on actual production floors, attendees gain a grounded understanding of how manufacturing functions align, overlap, and evolve in practice.

View All Submit An Event

Poll

Longest-running laboratory experiment

What is the longest-running laboratory experiment?
View Results Poll Archive

Products

Automotive Paints and Coatings, 2nd Edition

Automotive Paints and Coatings, 2nd Edition

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process.

See More Products
pci voices from the top ebook

PCI webinar

Related Articles

  • pci1118-Frontier-920038428-lead-900.jpg

    Failure Analysis of Synthetic Dyes Using Pyrolysis-GC/MS Technique

    See More
  • pci0119-Silberline-973379014-900.jpg

    Organic Matting Agent Modifies Aesthetics of Industrial Coatings Made with Aluminum Flake Pigments

    See More
  • Progress in the Field of Yellow Organic Pigments for High-Performance Applications

    See More

Related Products

See More Products
  • biological.jpg

    Biological and Biomedical Coatings Handbook: Processing and Characterization

  • thin films.jpg

    Thin Films and Coatings: Toughening and Toughness Characterization

  • corrosion.jpg

    Corrosion Control Through Organic Coatings 2nd Edition

See More Products
×

Keep the info flowing with our eNewsletters!

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Manufacturing Division
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey & Sample
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Youtube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing