This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Painting & Coating Industry (PCI) logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo
  • Magazine
    • Current Issue
    • Digital Edition
      • PCI Digital Editions
      • PCI China
    • Buyers' Guide
    • Coatings Supplier Handbook
    • Editorial Advisory Board
    • How to Submit Editorial
    • Subscribe
  • Topics
    • Additives
    • Distributors/Services
    • Equipment
    • Market Reports
    • Pigments
    • Resins/Polymers
    • Moody’s Coatings Conundrums
    • Powder Coating Kitchen
    • TiO2 Insider
  • Technologies
    • Adhesives
    • Architectural Coatings
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • UV Coatings
    • Waterborne
  • News
    • Latest News
    • Price Alerts
    • eNewsletter Archive
  • Products
    • New Products
    • Product of the Week
    • Product Spotlight
    • Must See Products and Services
  • Events
    • Calendar of Events
    • Coatings Trends & Technologies
    • Western Coatings Show
    • Powder Coating Summit
  • Resources
    • Additives Guide
    • Blogs
    • Classifieds
    • Global Top 10/ PCI 25
    • Industry Links
    • Online Exclusives
    • PCI Store
    • Student of the Month
    • Supplier Exhibits/Showcases
    • Virtual Supplier Brochures
    • White Papers
    • Sponsor Insights
  • Multimedia
    • Photo Gallery
    • Videos/PCI TV
    • Podcast
    • Webinars
  • Finishing Today
    • Finishing Today
    • Finishing Today Archives
    • Contact Finishing Today
  • EU Today
    • Articles from Europe
    • Calendar of European Events
    • EU Company News
    • EU Industry News
    • EU Names in the News
    • Subscribe for More EU News
  • Contact
    • Contact US
    • Advertise
Home » New Nanoscale Method Could Transform Data Storage
Breaking News

New Nanoscale Method Could Transform Data Storage

June 14, 2009
Reprints
No Comments

BERKLEY, CA - An innovative and easily implemented technique in which nanoscale elements precisely assemble themselves over large surfaces could soon open doors to dramatic improvements in the data storage capacity of electronic media, according to scientists at the University of California, Berkeley, and the University of Massachusetts Amherst (UMass Amherst).
 
"I expect that the new method we developed will transform the microelectronic and storage industries and open up vistas for entirely new applications," said co-lead investigator Thomas Russell, Director of the Materials Research Science and Engineering Center at UMass Amherst, visiting Miller Professor at UC Berkeley's Department of Chemistry and one of the world's leading experts on the behavior of polymers. "This work could possibly be translated into the production of more energy-efficient photovoltaic cells, for instance."
 
Russell conceived of this new approach with co-lead investigator Ting Xu, a UC Berkeley Assistant Professor with joint appointments in the Department of Material Sciences and Engineering and the Department of Chemistry. They describe their work in the Feb. 20 issue of the journal Science.
 
"The density achievable with the technology we've developed could potentially enable the contents of 250 DVDs to fit onto a surface the size of a quarter," said Xu, who is also a Faculty Scientist at Lawrence Berkeley National Laboratory.
 
Xu explained that the molecules in the thin film of block copolymers - two or more chemically dissimilar polymer chains linked together - will self-assemble into an extremely precise, equidistant pattern when spread out on a surface, much like a regiment of disciplined soldiers lining up in formation. For more than a decade, researchers have been trying to exploit this characteristic for use in semiconductor manufacturing, but they have been constrained because the order starts to break down as the size of the area increases.
 
Once the formation breaks down, the individual domains cannot be read or written to, rendering them useless as a form of data storage.
 
To overcome this size constraint, Russell and Xu conceived of the elegantly simple solution of layering the film of block copolymers onto the surface of a commercially available sapphire crystal. When the crystal is cut at an angle - a common procedure known as a miscut - and heated to 1,300 to 1,500 degrees Centigrade (2,372 to 2,732 degrees Fahrenheit) for 24 hours, its surface reorganizes into a highly ordered pattern of sawtooth ridges that can then be used to guide the self-assembly of the block polymers.
 
With this technique, the researchers were able to achieve defect-free arrays of nanoscopic elements with feature sizes as small as three nanometers, translating into densities of 10 terabits per square inch. One terabit is equal to 1 trillion bits, or 125 gigabytes.
 
Because crystals come in a variety of sizes, there are few limitations to how large this block copolymer array can be produced, the researchers said. They also noted that the angle and depth of the sawtooth ridges can be easily varied by changing the temperature at which the crystal is heated to fine-tune the desired pattern.
 
"We can generate nearly perfect arrays over macroscopic surfaces where the density is over 15-times higher than anything achieved before," said Russell. "With that order of density, one could get a high-definition picture on a screen the size of a JumboTron."
 
"It's one thing to get dozens of soldiers to stand in perfect formation in an area the size of a classroom, each person equidistant from the other, but quite another to get tens of trillions of individuals to do so on the field in a football stadium," Xu added. "Using this crystal surface as a guide is like giving the soldiers a marker so they know where to stand."
 
Other research teams across the country are engaged in similar efforts to break the size barrier of self-assembled block copolymers, but this new project by the UMass Amherst-UC Berkeley scientists differs in that it does not rely upon advances in lithography to achieve its goals.
 
In the semiconductor industry, optical lithography is a process in which light passes through a mask with a desired circuit pattern onto a photosensitive material, or photoresist, that undergoes a chemical change. Several steps of chemical treatment are then used to develop the desired pattern for subsequent use.
 
To keep up with Moore's Law and the demand for increasingly smaller features for semiconductors and microprocessors, industry has turned to nanolithography and the use of ever-shorter wavelengths of light at greater cost.
 
"The challenge with photolithography is that it is rapidly approaching the resolution limits of light," said Xu. "In our approach, we shifted away from this 'top down' method of producing smaller features and instead utilized advantages of a 'bottom up' approach. The beauty of the method we developed is that it takes from processes already in use in industry, so it will be very easy to incorporate into the production line with little cost."
 
An added benefit, said Xu, is that "our technique is more environmentally friendly than photolithography, which requires the use of harsh chemicals and acids."
 
UC Berkeley and UMass Amherst have filed a joint patent on this technology.
 
The U.S. Department of Energy and the National Science Foundation helped support this research.
subscribe to pci

Related Articles

Researchers Create Nanoscale Gold Coating With Largest-Ever Superlattice

EPA Could Consider New Air-Quality Standards for Lead

Butterfly Wings Could Inspire New Hue-Changing Materials

New Smart Coating Could Make Oil-Spill Cleanup Faster and More Efficient

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletter
  • Online Registration
  • Subscription Customer Service

More Videos

Sponsored Content What Is Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company. Interested in participating in our Sponsored Content section? Contact your local rep.

Close
Opentime-rheometer
Sponsored By
Clariant

New simple and accessible method successfully tests paint drying behavior

A novel method has been successfully tested to characterize the drying behavior of paint formulas, helping formulators to select the most favourable ingredients to optimize drying behavior of aqueous paints.

Popular Stories

DistributorsServices-126217275.jpg

Palmer Holland Adds Industry Veterans to CASE Sales Team

IndustrialCoatings-stk311313rkn.jpg

PPG Announces Global Price Increase on Industrial Coatings Products

sw pouch packaging

Sherwin-Williams Unveils New Pouch Packaging for Flooring Range

IndustryNews-493850587.jpg

Porcupinefish Inspires Superhydrophobic Material

CompanyNews-95996740.jpg

AkzoNobel Finalizes Mapaero Deal

Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Poll

PCI Magazine

Which of the following formats have you accessed information on paints and coatings in the last 12 months?
View Results Poll Archive

Products

Increasing the Durability of Paint and Varnish Coatings in Building Products and Construction 1st Edition

Increasing the Durability of Paint and Varnish Coatings in Building Products and Construction 1st Edition

See More Products

PCI holiday card challenge

PCI Magazine

pci december 2019

2019 December

December is our annual Buyers’ Guide, with listings by Product category, as well as by Supplier or Distributor name.

View More Create Account
  • More
    • Reprints
    • List Rental
    • Online Exclusives
    • Coatings Bookstore
    • Blog
    • Market Research
    • Custom Content & Marketing Solutions
    • Want More?
    • Connect
    • Manufacturing Group
    • Privacy Policy
    • Subscribe
    • Survey And Sample

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing