Painting & Coating Industry (PCI) logo Powder coating summit logo
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • MATERIALS
  • TECHNOLOGIES
  • FINISHING
  • RESOURCES
  • EVENTS
  • DIRECTORIES
  • EMAGAZINE
  • CONTACT
cart
facebook twitter linkedin youtube
  • NEWS
  • Latest News
  • Market Trends & Reports
  • Price Alerts
  • Subscribe to eNewsletters
  • Global Top 10/ PCI 25
  • Weekly Featured Article
  • COATLE Word Game
  • PRODUCTS
  • Product News
  • Must See Products and Services
  • MATERIALS
  • Additives
  • Resins/Polymers
  • Pigments
  • Equipment
  • Distributors
  • TECHNOLOGIES
  • Adhesives
  • Architectural Coatings
  • Industrial Coatings
  • Nanotechnology
  • Powder Coatings
  • Solventborne
  • Special Purpose Coatings
  • Sustainability
  • UV Coatings
  • Waterborne
  • Waterborne
  • FINISHING
  • Finishing News
  • Finishing Technologies
  • Finishing Equipment
  • RESOURCES
  • Columns
  • Blogs
  • Coatings Supplier Handbook
  • Podcasts and Videos
  • PCI Store
  • eBooks
  • Sponsor Insights
  • White Papers
  • COATLE Word Game
  • Columns
  • Ask Joe Powder
  • Did you know?
  • Distribution Dive
  • Focus on Canada
  • Formulating With Mike
  • Innovation Insights
  • Moody's Coatings Conundrums
  • Powder Coating Perspectives
  • Target the Market
  • TiO2 Insider
  • Blogs
  • Editor's Viewpoint
  • Industry Insights
  • Podcasts and Videos
  • COAT-IT! Podcast
  • Videos/PCI TV
  • EVENTS
  • Coatings Trends & Technologies Summit
  • Paint and Coatings Academy
  • Webinars
  • Calendar of Events
  • Lifetime Achievement Award
  • DIRECTORIES
  • Buyer's Guide
  • Equipment Directory
  • Materials Directory
  • EMAGAZINE
  • Current Issue
  • eMagazine Archive
  • China Issue Archive
  • Editorial Advisory Board
  • CONTACT
  • Contact Us
  • Advertise
  • Subscribe to eMagazine
  • Subscribe to eNewsletters
Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Price Alerts
    • Subscribe to eNewsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
    • FINISHING
      • Finishing News
      • Finishing Technologies
      • Finishing Equipment
    • RESOURCES
      • Columns
        • Ask Joe Powder
        • Did you know?
        • Distribution Dive
        • Focus on Canada
        • Formulating With Mike
        • Innovation Insights
        • Moody's Coatings Conundrums
        • Powder Coating Perspectives
        • Target the Market
        • TiO2 Insider
      • Blogs
        • Editor's Viewpoint
        • Industry Insights
      • Coatings Supplier Handbook
      • Podcasts and Videos
        • COAT-IT! Podcast
        • Videos/PCI TV
      • PCI Store
      • eBooks
      • Sponsor Insights
      • White Papers
      • COATLE Word Game
    • EVENTS
      • Coatings Trends & Technologies Summit
      • Paint and Coatings Academy
      • Webinars
      • Calendar of Events
      • Lifetime Achievement Award
    • DIRECTORIES
      • Buyer's Guide
      • Equipment Directory
      • Materials Directory
    • EMAGAZINE
      • Current Issue
      • eMagazine Archive
      • China Issue Archive
      • Editorial Advisory Board
    • CONTACT
      • Contact Us
      • Advertise
      • Subscribe to eMagazine
      • Subscribe to eNewsletters
    Paint and Coatings AdditivesIndustrial Coatings

    A New Generation of High-Speed Fluorosurfactants

    Performance Based on Environmentally Friendly Fluorochemistry

    By Merck KGaA
    Merck slide1
    Merck slide2
    Merck slide3
    Merck slide4
    Merck slide5
    Merck slide6
    Merck slide7
    Merck slide8
    Merck slide9
    Merck slide10
    Merck slide1
    Merck slide2
    Merck slide3
    Merck slide4
    Merck slide5
    Merck slide6
    Merck slide7
    Merck slide8
    Merck slide9
    Merck slide10
    May 1, 2013

    In July 2010 (ECJ),  a new concept of branched short-chain fluorosurfactants with exceptional properties and an improved eco-toxicological profile was presented.1 Following this approach, a series of fluorosurfactants with a remarkable combination of speed and low static surface tension has been synthesized and investigated in typical coating applications. In this article, emphasis is put on explaining the structure-property relationship and the performance of the new fluorosurfactants for different requirements.

    Fluorosurfactants are indispensable for achieving surface tensions below 20 mN/m. One reason is that fluorosurfactants have the highest potential to reduce interfacial tension (Figure 1). The “fluorophobic effect”,2 which means minimum interaction with other components in complex coating formulations, is the main reason for the higher effectiveness and efficiency of fluorosurfactants compared to other surfactant technologies.

    The basis of every fluorosurfactant is a hydrophobic moiety consisting of a perfluorinated alkyl chain. Recent concerns about the environmental persistence and bioaccumulative behavior of longer perfluorinated chains and their derivatives3 led to a ban of compounds containing more than six perfluorinated C-atoms. Reducing the length of the perfluorinated chain seems to be the next logical step, and a great variety of fluorosurfactants based on perfluorinated C6, C4 and even C2 chains were introduced to the market.

    Reducing the perfluorinated chain length however also means a reduced fluorophobic effect, which in some cases leads to disappointing performance. Obviously, simply cutting down the chain length does not lead to satisfactory results in balancing ecotoxicological impact and performance.

    In general, a high interfacial packing density of the perfluorinated groups correlates with low surface tension. Linear long-chain fluorosurfactants like C8-based materials are known for dense (crystal-like) packing of hydrophobic groups, resulting in static surface tension that can reach minimum values of 16 mN/m in water. In contrast to this, common theory describes that short-chain fluorosurfactants based on linear perfluorinated C2 chains cannot provide a high packing density of surfactant molecules, because their hydrophobicity is too low to shield the interfacial surfactant layer against polar water molecules. This would lead to an enlargement of intermolecular surfactant distance (distance between single surfactant molecules) with a lower packing density, and results in a higher surface tension of 30-34 mN/m (Figure 2a).

    So, what possibilities exist to design surfactants with eco-friendly C2 or C3 perfluorinated chains that have low surface tension comparable to long-chain fluorosurfactants? In the case of perfluorooxetanes, many C2 groups are attached to an oligomer backbone,4 which leads to an increase in packing density and a lower surface tension of 23 mN/m compared to linear C2 perfluorinated surfactants (Figure 2b). However, surfactants based on this concept cannot achieve very dense packing because the distance of perfluorinated groups is limited by the oligomeric backbone. This leads to inferior performance compared to C6-based materials.

    To improve the packing density of perfluorinated C2 groups, a different structural concept is needed. With regard to branched surfactant structures, the molecular distance (distance within a surfactant molecule) between the perfluorinated groups can be adjusted by the choice of molecule segments between the hydrophobic groups and their connecting points.

    In summary, the total packing density of perfluorinated groups per surface unit can be increased with branched surfactants because the distance between perfluorinated groups given by covalent binding is lower than in the case of a self assembly of linear fluorosurfactants where the packing is simply given by the intermolecular distance5 (Figure 2c). This can lead to lower surface tension.

    The confirmation of this hypothesis is given by the static surface tension of a branched short-chain surfactant based on three perfluorinated C2 groups linked to one hydrophilic moiety, which was introduced to the market as Tivida™ FL 2300. This molecule can reduce the aqueous surface tension to 20 mN/m; this has never before been reported for a C2-based surfactant. Furthermore, no bioaccumulation could be determined according to the OECD 305 guidelines, making this fluorosurfactant a very attractive alternative for eco-friendly formulations, regulated by governmental guidelines excluding long-chain fluorosurfactants (e.g., “Nordic Swan” ecolabel). Additionally, no signs of toxicity could be found in relevant test studies, and for this reason Tivida FL 2300 will receive no classification for oral and inhalative toxicity.

    However, the static surface tension in water alone is not sufficient to describe a surfactant. In the final application, the most important property is the time the surfactant needs to bring down the surface tension of a liquid. Applications are not static; they are dynamic processes, and thus it makes sense to investigate the dynamic properties of surfactants. This is usually done with a bubble pressure tensiometer, which measures the time dependence of the surface tension reduction.

    Besides the low static surface tension, the branched structure is beneficial for improving the dynamic surface tension of fluorosurfactants, which is another key parameter for superior additive performance. The unique speed of Tivida FL 2300 is shown by the comparison of dynamic surface tension curves in Figure 3. At a concentration of 0.1 wt% Tivida 2300, the surface tension of water can be reduced to < 30 mN/m within 100 ms. This result shows significant advantages compared to all other fluorosurfactant technologies, which typically need 10 s to reach this value.

    The fast diffusion of branched structures can be explained with properties that are already known from hydrocarbon Gemini-type surfactants. These structures form non-stable aggregates in solution that are easier to dissolve than micelles of common linear surfactants. Therefore, Gemini amphiphiles are more quickly available to occupy newly formed interfaces (Figure 4). The hypothesis can be formulated that a similar effect could be the cause of the exceptional speed of the presented fluorinated surfactant. Up from 100 ms, Tivida FL 2300 shows even a better dynamic behavior than one of the fastest acetylene diol Gemini types in the market, which can only reach an equilibrium surface tension of 26 mN/m.

    One conclusion of these findings is that the dynamic properties of different fluorosurfactant building blocks differ to such a large extent that this cannot be neglected when a fluorosurfactant is described. Therefore, a new type of diagram is proposed, in which the static surface tension is combined with the dynamic surface tension.

    In Figure 5, the most effective surfactant is located as close as possible to the upper right corner (first quadrant), which means it is capable of reducing the surface tension quickly to very low values.

    From Figure 5 it becomes clear that Tivida is not only fast, but it really outperforms every other surfactant. After 100 ms, Tivida lowers the surface tension to 30 mN/m when conventional linear surfactants still show high values up to 70 mN/m. It is expected that this speed advantage should give Tivida a decisive advantage in fast-drying applications like printing or coil coatings.

    In Figure 5 the relationship between dynamic and static surface tension of all relevant fluorosurfactant types is illustrated. It becomes clear that today’s most-often used types of fluorosurfactants in fact need quite some time to lower the surface tension, which might be the reason why in some cases they do not show satisfactory effects despite their very low static surface tension.

    In some cases, however, surface tensions of <20mN/m might be needed, so it is useful to investigate whether the exceptional speed of branched short-chain fluorosurfactants can be combined with the very low surface tension of slower, linear long-chain molecules.

    In Figure 5 it can be seen that an 80:20 mixture of branched Tivida with a C6-based fluorosurfactant surprisingly not only shows a volume percent-dependent mixture of the properties of both ingredients, but a significant synergistic effect (shift from second to first quadrant). The static surface tension of the mixture is even lower than that of the product based on C6 perfluorinated groups alone, combined with the exceptional speed of the branched surfactants.

    It can be summarized that branched, short-chain fluorosurfactants can be used as a tool to speed up slower fluorosurfactants and achieve synergistic effects. Derived from thermodynamics it is known that the “faster” surfactant reaches its final interfacial packing first before it is partially or fully substituted by a “slower” surfactant with a lower gstatic(Figure 6). If a partial substitution takes place, certain interfacial mixtures can result in very dense packing that leads to a synergistic effect. The surface tension that can be achievable with such a mixture would be lower than using the single surfactants alone with the additional speed of the branched surfactant.

    The following section considers the correlation between aqueous surface tension measurements and the resulting effect of speed and low surface tension in water-based coating systems. For this purpose a 1K PUR/melamine plastic basecoat was formulated containing a 10-fold overdose of SiO2/silicone-based defoamer. The coating drawdown shows extreme cratering caused by the incorporation of low-energy contamination particles (Figure 7).

    The reason for choosing this system was to show a suitable differentiation of anti-cratering properties of different surfactants due to the reduction of interfacial tension between the particles in the water-based coating.

    The results in Figure 8 show the very good anti-cratering performance of Tivida FL 2300 in this application. Among the different fluorosurfactant technologies only the C6 telomer can compete with the effectiveness of the branched short-chain fluorosurfactants. Interestingly in this application it is not the low static surface tension of the formulation that is important for a good effect, but a combination of surface tension reduction and speed that cannot be explained with the static surface tension alone. Although the polymer based on C4 perfluorinated groups in Figure 8 has a static surface tension of 20 mN/m, it does not show a convincing anti-cratering effect due to its inferior dynamic properties. This proves the hypothesis that fast dynamic surface tension is necessary for good fluorosurfactant application performance. Nevertheless, an extremely low surface tension in the 1K basecoat is possible with a combination of Tivida 2300 with a C6 telomer. This surfactant mixture combines the lower static surface tension of the telomer with the faster speed of the branched structure and delivers superior anti-cratering.

    It should be noted that additive performance can differ significantly from formulation to formulation, and the optimum mixture has to be found in application-specific trials.

    A branched structure should also show advantages in foaming behavior.6 This can be proved by using Tivida in floor polish applications where a polymer latex is applied by wiping with a soaked cloth, a process in which a lot of foam may be generated. The task of the fluorosurfactant is to enable wetting, leveling and gloss improvement of the dried latex film on the floor.

    Foam formation is strongly correlated to the stability of foam lamellae. Current surfactant theory shows that linear surfactant molecules tend to stabilize the foam lamellae, thus being prone to foam. Branched surfactants, however, rather tend to destabilize the foam lamellae, thereby avoiding foam formation. Figures 9 and 10 show the results of branched Tivida compared to a C6 perfluorinated linear fluorosurfactant. Due to its superior performance, Tivida FL 2300 has been recommended by major producers in floor polish applications since the beginning of this year.

    To summarize, the concept of branched, short-chain fluorosurfactants not only leads to more environmentally friendly products, but also to one of the fastest surfactants ever measured. The dynamic properties of the Tivida concept, in combination with very low static surface tension, could be realized with a new structural principle. A new diagram (Figure 5) for visualizing static and dynamic surfactant properties was proposed, and its relevance proven in practical coatings applications. Furthermore, Tivida FL 2300 can be used to improve the dynamic properties of other fluorosurfactants and achieve additional synergistic effects in mixed surfactant systems.

     

    References

    1. Jonschker, G., et al. Europ. Coat. Journal 2010, No. 7-8, 24-27.
    2. Farn, R.J. Surfactants, Blackwell Publishing (2009), 228-229.
    3. Environmental Protection Agency (EPA), 2010/2015 PFOA Stewardship Program.
    4. Ashwin R.; Yongsin K.; Charles K.; Vernon R.; Richard T. Langmuir, 2(2006), 4811-4817.
    5. Menger F.; Keiper J. Angew. Chem.1989,112 (2000).
    6. Schwarz J. Journal of Coatings Technology1992, 67.

     

    This article was originally published in the November 2012 issue of the European Coatings Journal. Tivida FL 2300 is available in the U.S. as R&D material "MAFS 93" from EMD Chemicals. Registration via a pre-manufacture notice with the EPA is currently ongoing. 

    Contact Christina Marlier at christina.marlier@emdmillipore.com for more information.

    KEYWORDS: Coil Coatings Floor Coatings Green Paint Technology Surfactants

    Share This Story

    Looking for a reprint of this article?
    From high-res PDFs to custom plaques, order your copy today!

    Co-authors Steffen Schellenberger, Jörg Pahnke, Reiner Friedrich and Gerhard Jonschker | Merck KGaA, Darmstadt, Germany

    Recommended Content

    JOIN TODAY
    to unlock your recommendations.

    Already have an account? Sign In

    • PCI-0724-Global10-Feature-1440.png

      2024 Global Top 10: Top Paint and Coatings Companies

      Who ranks on top? PCI’s annual ranking of the top 10...
      Global Top 10 and PCI 25
      By: Courtney Bassett
    • PCI-0724-PCI25-Feature-1440.png

      2024 PCI 25: Top Paint and Coatings Companies

      PCI's annual ranking of the top 25 North American paint...
      Paint and Coating Market Reports
      By: Courtney Bassett
    • pci1022-Kinaltek-Lead-1170.jpg

      A Novel Pigment Production Technology

      Following an extensive R&D program that demonstrated...
      Paint and Coating Pigments
      By: Jawad Haidar and Nitin Soni
    You must login or register in order to post a comment.

    Report Abusive Comment

    Manage My Account
    • eMagazine
    • eNewsletter
    • Online Registration
    • Subscription Customer Service

    The Coatings Minute: Why Industry News Matters More Than Ever

    The Coatings Minute: Why Industry News Matters More Than Ever

    CTT Registration Now Open

    CTT Registration Now Open

    The Coatings Minute: Your Inside Look at PCInnovations

    The Coatings Minute: Your Inside Look at PCInnovations

    The Coatings Minute: Print Returns with PCI’s New Showcase Issue

    The Coatings Minute: Print Returns with PCI’s New Showcase Issue

    More Videos

    Sponsored Content

    Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

    close
    • Modern arapartment complex painted in bright colors.
      Sponsored byEPS - Engineered Polymer Solutions

      Architectural Polymers Leading the Way in Coatings Innovation

    • paint sprayer in a workshop
      Sponsored byallnex

      Enabling Performance and Compliance: allnex Introduces a New Line of VOC Exempt Solvent-Borne Resins

    Popular Stories

    No. 3 AkzoNobel

    AkzoNobel to Close Two Manufacturing Sites

    Modern living room interior with green plants, sofa and green wall

    Reimagining Architectural Paints with Plant-Based Acrylic Binders

    Modern arapartment complex painted in bright colors.

    Architectural Polymers Leading the Way in Coatings Innovation



    PCI Buyers Guide

    Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

    Start your RFP

    Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

    Find Suppliers

    Events

    September 3, 2025

    Coatings Trends & Technologies Summit

    The Coatings Trends & Technologies (CTT) Summit is an annual conference for both liquid and powder coatings formulators and manufacturers to discuss innovations in coatings technology. This event combines high-quality technical presentations, a resource-rich exhibit hall, and dedicated networking opportunities to connect scientific minds, foster innovation, and cultivate game-changing new ideas!

    January 1, 2030

    Webinar Sponsorship Information

    For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

    View All Submit An Event

    Poll

    Longest-running laboratory experiment

    What is the longest-running laboratory experiment?
    View Results Poll Archive

    Products

    CTT Summit Short Courses (Live 9/3/25)

    Coatings Trends & Technologies Summit is expanding its offerings with four short courses. These short courses will offer an extensive day of interactive learning.

    See More Products
    pci  webinar april 2025

    PCI CASE EBOOK

    Related Articles

    • Huntsman feature

      Potential for a New Generation of Solar-Reflective Coatings

      See More
    • A New Generation of Sparkling Effect Pigments

      See More
    • pci1220-Bitrez-627864824-Lead-900.jpg

      A New Generation of REACH-Compliant Ketamine Epoxy Curing Agents

      See More

    Related Products

    See More Products
    • 9780080447087.jpg

      Handbook of Adhesives and Sealants, Volume 2

    • failiure-analysis-of-paints

      Failure Analysis of Paints and Coatings, Revised Edition

    • handbook-of-adhesives-and-s

      Handbook of Adhesives and Sealants, Volume 1

    See More Products

    Events

    View AllSubmit An Event
    • September 3, 2025

      Coatings Trends & Technologies Summit

      The Coatings Trends & Technologies (CTT) Summit is an annual conference for both liquid and powder coatings formulators and manufacturers to discuss innovations in coatings technology. This event combines high-quality technical presentations, a resource-rich exhibit hall, and dedicated networking opportunities to connect scientific minds, foster innovation, and cultivate game-changing new ideas!
    View AllSubmit An Event
    ×

    Keep the info flowing with our eNewsletters!

    Get the latest industry updates tailored your way.

    JOIN TODAY!
    • RESOURCES
      • Advertise
      • Contact Us
      • Directories
      • Store
      • Want More
    • SIGN UP TODAY
      • Create Account
      • eMagazine
      • eNewsletters
      • Customer Service
      • Manage Preferences
    • SERVICES
      • Marketing Services
      • Reprints
      • Market Research
      • List Rental
      • Survey & Sample
    • STAY CONNECTED
      • LinkedIn
      • Facebook
      • Youtube
      • X (Twitter)
    • PRIVACY
      • PRIVACY POLICY
      • TERMS & CONDITIONS
      • DO NOT SELL MY PERSONAL INFORMATION
      • PRIVACY REQUEST
      • ACCESSIBILITY

    Copyright ©2025. All Rights Reserved BNP Media.

    Design, CMS, Hosting & Web Development :: ePublishing

    Painting & Coating Industry (PCI) logo Powder coating summit logo
    search
    cart
    facebook twitter linkedin youtube
    • Sign In
    • Create Account
    • Sign Out
    • My Account
    Painting & Coating Industry (PCI) logo Powder coating summit logo
    • NEWS
      • Latest News
      • Market Trends & Reports
      • Price Alerts
      • Subscribe to eNewsletters
      • Global Top 10/ PCI 25
      • Weekly Featured Article
      • COATLE Word Game
    • PRODUCTS
      • Product News
      • Must See Products and Services
    • MATERIALS
      • Additives
      • Resins/Polymers
      • Pigments
      • Equipment
      • Distributors
    • TECHNOLOGIES
      • Adhesives
      • Architectural Coatings
      • Industrial Coatings
      • Nanotechnology
      • Powder Coatings
      • Solventborne
      • Special Purpose Coatings
      • Sustainability
      • UV Coatings
      • Waterborne
      • FINISHING
        • Finishing News
        • Finishing Technologies
        • Finishing Equipment
      • RESOURCES
        • Columns
          • Ask Joe Powder
          • Did you know?
          • Distribution Dive
          • Focus on Canada
          • Formulating With Mike
          • Innovation Insights
          • Moody's Coatings Conundrums
          • Powder Coating Perspectives
          • Target the Market
          • TiO2 Insider
        • Blogs
          • Editor's Viewpoint
          • Industry Insights
        • Coatings Supplier Handbook
        • Podcasts and Videos
          • COAT-IT! Podcast
          • Videos/PCI TV
        • PCI Store
        • eBooks
        • Sponsor Insights
        • White Papers
        • COATLE Word Game
      • EVENTS
        • Coatings Trends & Technologies Summit
        • Paint and Coatings Academy
        • Webinars
        • Calendar of Events
        • Lifetime Achievement Award
      • DIRECTORIES
        • Buyer's Guide
        • Equipment Directory
        • Materials Directory
      • EMAGAZINE
        • Current Issue
        • eMagazine Archive
        • China Issue Archive
        • Editorial Advisory Board
      • CONTACT
        • Contact Us
        • Advertise
        • Subscribe to eMagazine
        • Subscribe to eNewsletters