Painting & Coating Industry (PCI) logo Powder coating summit logo
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • MATERIALS
  • TECHNOLOGIES
  • FINISHING
  • RESOURCES
  • EVENTS
  • DIRECTORIES
  • EMAGAZINE
  • CONTACT
cart
facebook twitter linkedin youtube
  • NEWS
  • Latest News
  • Market Trends & Reports
  • Price Alerts
  • Subscribe to eNewsletters
  • Global Top 10/ PCI 25
  • Weekly Featured Article
  • COATLE Word Game
  • PRODUCTS
  • Product News
  • Must See Products and Services
  • MATERIALS
  • Additives
  • Resins/Polymers
  • Pigments
  • Equipment
  • Distributors
  • TECHNOLOGIES
  • Adhesives
  • Architectural Coatings
  • Industrial Coatings
  • Nanotechnology
  • Powder Coatings
  • Solventborne
  • Special Purpose Coatings
  • Sustainability
  • UV Coatings
  • Waterborne
  • Waterborne
  • FINISHING
  • Finishing News
  • Finishing Technologies
  • Finishing Equipment
  • RESOURCES
  • Columns
  • Blogs
  • Coatings Supplier Handbook
  • Podcasts and Videos
  • PCI Store
  • eBooks
  • Sponsor Insights
  • White Papers
  • COATLE Word Game
  • Columns
  • Ask Joe Powder
  • Did you know?
  • Distribution Dive
  • Focus on Canada
  • Formulating With Mike
  • Innovation Insights
  • Moody's Coatings Conundrums
  • Powder Coating Perspectives
  • Target the Market
  • TiO2 Insider
  • Blogs
  • Editor's Viewpoint
  • Industry Insights
  • Podcasts and Videos
  • COAT-IT! Podcast
  • Videos/PCI TV
  • EVENTS
  • Coatings Trends & Technologies Summit
  • Paint and Coatings Academy
  • Webinars
  • Calendar of Events
  • Lifetime Achievement Award
  • DIRECTORIES
  • Buyer's Guide
  • Equipment Directory
  • Materials Directory
  • EMAGAZINE
  • Current Issue
  • eMagazine Archive
  • China Issue Archive
  • Editorial Advisory Board
  • CONTACT
  • Contact Us
  • Advertise
  • Subscribe to eMagazine
  • Subscribe to eNewsletters
Painting & Coating Industry (PCI) logo Powder coating summit logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Painting & Coating Industry (PCI) logo Powder coating summit logo
  • NEWS
    • Latest News
    • Market Trends & Reports
    • Price Alerts
    • Subscribe to eNewsletters
    • Global Top 10/ PCI 25
    • Weekly Featured Article
    • COATLE Word Game
  • PRODUCTS
    • Product News
    • Must See Products and Services
  • MATERIALS
    • Additives
    • Resins/Polymers
    • Pigments
    • Equipment
    • Distributors
  • TECHNOLOGIES
    • Adhesives
    • Architectural Coatings
    • Industrial Coatings
    • Nanotechnology
    • Powder Coatings
    • Solventborne
    • Special Purpose Coatings
    • Sustainability
    • UV Coatings
    • Waterborne
    • FINISHING
      • Finishing News
      • Finishing Technologies
      • Finishing Equipment
    • RESOURCES
      • Columns
        • Ask Joe Powder
        • Did you know?
        • Distribution Dive
        • Focus on Canada
        • Formulating With Mike
        • Innovation Insights
        • Moody's Coatings Conundrums
        • Powder Coating Perspectives
        • Target the Market
        • TiO2 Insider
      • Blogs
        • Editor's Viewpoint
        • Industry Insights
      • Coatings Supplier Handbook
      • Podcasts and Videos
        • COAT-IT! Podcast
        • Videos/PCI TV
      • PCI Store
      • eBooks
      • Sponsor Insights
      • White Papers
      • COATLE Word Game
    • EVENTS
      • Coatings Trends & Technologies Summit
      • Paint and Coatings Academy
      • Webinars
      • Calendar of Events
      • Lifetime Achievement Award
    • DIRECTORIES
      • Buyer's Guide
      • Equipment Directory
      • Materials Directory
    • EMAGAZINE
      • Current Issue
      • eMagazine Archive
      • China Issue Archive
      • Editorial Advisory Board
    • CONTACT
      • Contact Us
      • Advertise
      • Subscribe to eMagazine
      • Subscribe to eNewsletters
    Special Purpose CoatingsWaterborne Coatings

    New Developments in One-Component Water-Based Concrete Coatings

    By Michael Krayer, Alexandra Jarriel
    pci0919-BASF-1093842536-900.jpg
    September 5, 2019

    Coatings for horizontal concrete surfaces such as concrete walkways or garage floors must hold up to very demanding conditions, not the least of which is withstanding foot and vehicle traffic. Other performance criteria include adhesion to a wide variety of concrete and masonry surfaces, chemical resistance and, especially for clear coatings, resistance to water whitening. As a result of the high physical demands on concrete coatings, more costly and labor-intensive two-component (2K) epoxy or polyurethane coatings, either water-based, solvent-based or 100% systems, are still widely used in the market. Therefore, there is a high demand for getting comparable 2K performance with a one-component (1K) water-based system.

    One of the most important performance attributes for these coatings is the ability to resist peeling or imprinting after contact with hot tires, often referred to as hot tire pick-up (HTP) resistance. The issue of car tires pulling the coating from the concrete substrate or leaving a tire mark is especially pronounced in 1K waterborne coatings. The development of new and improved 1K waterborne products has been somewhat lagging due to the lack of an industry-wide standardized laboratory test method. Furthermore, real-life exposure testing and field trials can be lengthy, and wide-ranging parameters, including concrete type, concrete preparation, environmental conditions or the types of tires, can have a significant impact on the HTP failure modes. The difficulty of reliably testing HTP is also exemplified by an ASTM International HTP test (ASTM WK14355), which has been in draft form and under development for the last several years.1

    Typically, HTP lab tests are carried out on quarry tiles since they provide the most consistent surface. Concrete blocks or tiles are sometimes used, but care must be taken to ensure consistency between different samples. The substrate is then coated with one to two coats followed by one to seven days of dry time. The coated substrate may be pre-conditioned by heating, wetting, scarring or any other conditions that a coating may experience during typical use. Tire sections (4-10 in2) may also be pre-conditioned by heating and/or wetting. The tire section is then pressed by various means to the coated substrate at room or elevated temperature for 1 to 24 hrs. Afterwards, the tire sections are removed and the coatings are evaluated for delamination, imprinting and staining. It is easy to see how the large number of variables that coatings manufactures must consider and the lack of an industry-wide accepted test method makes it difficult for raw materials suppliers to develop new products for this market space.

    This article outlines a systematic study to improve the laboratory test method for hot tire pick-up, and further compares some of the other important performance attributes between 1K water-based and 2K solvent-based clear and pigmented concrete coatings.

     

    Hot Tire Pick-Up Laboratory Test Optimization

    To improve the laboratory test method for HTP, a Design of Experiments (DoE) with the following variables was conducted:

    Tire type: The tire type can have a large influence on the HTP performance of a coating. There is also some debate over whether a new or used tire will result in more or less coating delamination and/or imprinting. Therefore, this study tested a used high-performance tire (Bridgestone®   Potenza RE-11), a used winter tire (Firestone®   Firehawk PVS), a used all-season tire (Bridgestone Potenza RE97 AS), and a new all-season tire (Bridgestone Potenza RE97 AS).

    Tire temperature: The tire was heated to either 60 or 100 °C before it was pressed on to the coated substrate.

    Tile pre-conditioning: The coated tile was pre-conditioned either by applying a wet paper towel to the surface at room temperature for 30 min, or heating the coated tile to 60 °C for 30 min.

    Testing temperature: The test was conducted at either room temperature or at 60 °C in an oven while the tire was pressed to the coated substrate.

    Pressure applied: The tires were pressed onto the substrate either at 25 or 35 lbs/in2, which corresponds to the weight and pressure a mid-sized sedan or large SUV would exert onto a garage floor. The original equipment used by BASF for the HTP test was a Kohler press using calibrated springs (Figure 1), which could accommodate one tile/sample at a time. For this testing we designed a hydraulic press that could test four tiles/samples at one time, as well as give a more accurate reading of the actual applied pressure (Figure 2).

    Kohler press used for hot tire pick-up testing
    FIGURE 1 » Kohler press used for hot tire pick-up testing.
    Hydraulic press used for new hot tire pick-up testing
    FIGURE 2 » Hydraulic press used for new hot tire pick-up testing.

    Coating type: BASF tested four different commercially available concrete coatings (two clear and two pigmented systems), which claim to exhibit HTP resistance.

    The testing was carried out as follows. The substrates (6"x6" unglazed quarry tiles) were coated with two coats of the clear or pigmented commercial concrete coating (the first 2g coat was applied, followed by a four-hour dry time, and then the second 2g coat was applied). The coated tile was then allowed to dry at ambient temperature for three days before testing. 1.5” x 3” (4.5 in2) tire pieces were preheated for 30 min. Note: the tire pieces were cut from full tires using an angle grinder while trying to get a consistent tread pattern on each tire piece. The coated tile was conditioned as described above for 30 min (60 °C dry or room temperature wet).

    Three pieces of the same tire were placed on each tile, and pressure was applied with a hydraulic press. For example, four tiles with three 4.5 in2 tire pieces each requires 1,890 lbs of pressure (4.5 in2 x 3 pieces per tile x 4 tiles x 35 lbs/in2). Pressure was applied at room temperature or at 60 °C in an oven for 90 min. After 90 min the pressure was released. The tiles and tire pieces were removed from the hydraulic press and allowed to cool to room temperature for 30 min.

    After the tires cooled to room temperature, a force gauge was used to pull each tire piece off the coating via a screw hook on the top or bottom end of the tire piece (Figure 3). The force required to pull off the three tire pieces from each tile was averaged and recorded. The degree of delamination for the three tire pieces on each tile was rated on a scale from 0-5 (0 = no delamination, 5 = complete delamination), and was averaged and recorded. Figure 4 (pg. 42) shows examples of delamination ratings. Finally, the degree of stain imprinting was rated on a scale from 0-5 (0 = no stain, 5 = worst stain). Figure 5 (pg. 42) shows tire imprinting examples.

    Mechanical force gauge used to measure adhesion of the tire pieces to the coating
    FIGURE 3 » Mechanical force gauge used to measure adhesion of the tire pieces to the coating.
    Examples of delamination ratings on quarry tiles with a clear coat (left) and pigmented coating (right).
    FIGURE 4 » Examples of delamination ratings on quarry tiles with a clear coat (left) and pigmented coating (right).
    Examples of stain imprinting ratings on quarry tiles with clear coats (top) and pigmented coatings (bottom)
    FIGURE 5 » Examples of stain imprinting ratings on quarry tiles with clear coats (top) and pigmented coatings (bottom).

     

    Results and Discussion

    A fractional factorial design with a total of 128 experiments was conducted using the above conditions, and the statistical modeling results are summarized in the main effect plots in Figure 6. In the main effects plot, the mean for each factor level is connected by a line, and a reference line represents the overall mean (a steeper slope represents a greater magnitude of the effect).2

    Hot tire pick-up main effect plots
    FIGURE 6 » Hot tire pick-up main effect plots.

    The main effect for adhesion, delamination and tire imprint are summarized below:

    Adhesion: The high-performance tire showed the highest average adhesion. It is noteworthy that the new all-season tire adhered significantly less and showed less delamination in comparison to the used all-season tire, which could be attributed to any residual release agents remaining on the new tire from the tire manufacturing process. Furthermore, the higher initial tire temperature showed significantly higher average adhesion, and applying the tire pieces to a wet coating versus a heated dry coating showed more adhesion. Wetting the coated tile likely softens the coating and therefore decreases the coatings resistance to HTP. Finally, testing at 60 °C in an oven showed higher average adhesion.

    Delamination: Similar to the adhesion results, the high-performance tire, a higher initial tire temperature, applying the tire pieces to a wet coating and testing at 60 °C also resulted in the highest average delamination.

    Imprint resistance: Again, similar to the adhesion and delamination results, the high-performance tire, a higher initial tire temperature, and testing at 60 °C also resulted in the highest average stain imprinting. However, in contrast to the adhesion and delamination results, applying the tire pieces to a wet coating versus a heated dry coating showed lower stain imprinting.

    In general, the two different pressures applied to the tire did not show any significant differences for any of the three responses. Therefore, the pressure effects plot is omitted from Figure 6. One reason why the different pressures might not have shown any significant impact is because the pressure was set at the beginning of the test and then dropped off at different rates, depending on the tire type, initial tire temperature and testing temperature. Finally, the commercial coatings showed significant differentiation in each one of the tests, which illustrates that the testing conditions that were explored here can differentiate between good and bad HTP performance.

    Overall, the most stringent conditions chosen from this study to give the most reliable and consistent failure in laboratory HTP tests were as follows:

    • Using a high-performance tire (Bridgestone Potenza RE-11);
    • Preheating the tire to 100 °C;
    • Pretreating the coated tile with a wet paper towel;
    • Testing at 60 °C.

    Although pressure did not have significant impact in our testing, 35 lbs/in2 starting pressure was chosen to account for any pressure drop.

     

    Concrete Coating Benchmarking

    The newly developed HTP test was then used to benchmark some of BASF’s 1K water-based products for concrete/garage floor coatings, in clear and pigmented formulations, against commercial 1K water-based, 2K polyurethane (PU) and epoxy systems. The BASF products included JONCRYL® 1982, JONCRYL 2970, JONCRYL 2980 and the most recently developed JONCRYL 2990. JONCRYL 1982 has a higher coalescence/VOC demand (250 g/L) compared to JONCRYL 2970, 2890 and 2990 (50-100 g/L) but has a good balance of properties in applications that can tolerate higher VOCs. JONCRYL 2970 has excellent water whitening resistance and adhesion properties, while JONCRYL 2980 is a harder polymer with better chemical and dirt-pickup resistance. JONCRYL 2990 has an excellent balance of properties including high hardness, chemical resistance, water whitening resistance, adhesion to concrete and HTP resistance.

    JONCRYL 1982, 2970 and 2980 were formulated in clear and pigmented formulations according to the guiding formulations provided on the technical data sheets, and JONCRYL 2990 was formulated in the formulations shown in Tables 1 and 2. A separate coalescent study with JONCRYL 2990 showed that EFKA® PL 5651 plasticizer had the best efficiency to achieve good film formation in clear formulations.

    Clear formulation for JONCRYL 2990
    TABLE 1 » Clear formulation for JONCRYL 2990.
    Pigmented formulation for JONCRYL 2990
    TABLE 2 » Pigmented formulation for JONCRYL 2990.

     

    HTP Results

    The HTP results are shown in Table 3 and Figure 7. As expected, both the clear and pigmented 2K PU and epoxy systems showed excellent HTP performance, while the commercial 1K water-based systems and JONCRYL 2970 showed significant delamination, tire adhesion and imprinting. Formulated in a pigmented system, JONCRYL 2980 also had good HTP resistance, however showed some defects in the clear coating, although slightly better compared to the commercial 1K water-based system. Similar to the 2K systems, both JONCRYL 1982 and 2990 had excellent HTP resistance in the pigmented coatings and only showed slight tire adhesion in the clear coatings, without showing any sign of delamination or significant stain imprinting.

    Hot tire pick-up benchmarking results
    TABLE 3 » Hot tire pick-up benchmarking results.
    Hot tire pick-up comparison between (A) commercial water-based product and (B) JONCRYL 2990
    FIGURE 7 » Hot tire pick-up comparison between (A) commercial water-based product and (B) JONCRYL 2990.

     

    Testing Other Properties

    Other commonly conducted laboratory tests for concrete coatings include hardness, water whitening/blush resistance, adhesion, chemical resistance and dirt pick-up resistance. The results are summarized below for clear coatings.

    Pendulum hardness for the 2K systems is still significantly higher (>40 swings) compared to the water-based systems tested here. The hardness for the water-based systems ranged from 15 to 31 swings, with JONCRYL 2990 showing the highest hardness (Figure 8).

    Pendulum hardness (swings) benchmarking results
    FIGURE 8 » Pendulum hardness (swings) benchmarking results.

    Water whitening resistance was tested by coating quarry tiles with two coats. After letting the second coat dry for 4 hrs, one edge of each tile (~2 inches) was submerged into water, and whitening was assessed on a 0-4 rating (Figure 9) after 1 hr, 1 day, 3 days and 7 days. At that time the tiles were rotated 90°, so that the part of the tile that now 7 days dry time was submerged in water, and water whitening was assessed again after 1 hr, 1 day, 3 days and 7 days. In total, one section of the 4-hr cure time (early blush resistance), as well as the 7-day cured sections were rated for 21 days. The results are shown in Figure 10, which show that both JONCRYL 2970 and 2990 have the best water whitening resistance. The 2K systems show good water whitening resistance once the films had fully cured (especially the epoxy system), however completely failed if they encountered water before they had fully cured.

    Water whitening/blush resistance rating scale
    FIGURE 9 » Water whitening/blush resistance rating scale.
    Water whitening/blush resistance benchmarking results
    FIGURE 10 » Water whitening/blush resistance benchmarking results.

    Adhesion was tested on quarry tiles with two coats using tape pull adhesion testing after 1 day and 7 day cure time (Figure 11). The test was conducted wet with and without a crosshatch, and dry with a crosshatch. The dry test was done by placing the adhesive tape on the scribed grid pattern before pulling it off at a 180° angle, while for the wet testing a soaked paper towel was placed over the test area (scribed and unscribed) for 10 min before applying the tape and pulling it off. The samples were rated on a 0-5 scale with 0 = no adhesion and 5 = no failure. Both JONCRYL 2990 and 2970 showed good overall adhesion, similar to the 2K systems, and significantly better adhesion than the other water-based systems tested here.

    Adhesion to quarry tile benchmarking results
    FIGURE 11 » Adhesion to quarry tile benchmarking results.

    For the chemical resistance testing, quarry tiles with two coats were marked off into nine sections. On each section, the designated chemical (anti-freeze, brake fluid, engine oil, transmission fluid, windshield washer fluid, power steering fluid, gasoline, 50% isopropyl alcohol, bleach) was applied by saturating a small paper towel. After 1 hr, the saturated paper towel was removed and the area was rubbed with a wooden tongue depressor to determine if the chemical compromised the film integrity. The films were rated on a 0-5 scale with 0 = complete failure and 5 = no failure. The results show that JONCRYL 2990 performs as well or better than the 2K systems (Figure 12).

    Chemical resistance benchmarking results
    FIGURE 12 » Chemical resistance benchmarking results.

    Finally, the dirt pick-up resistance (DPUR) was compared by applying carbon black powder to the cured coating at room temperature and at 60 °C, and rating the intensity of the carbon black stain before and after cleaning with a wet sponge. The rating was again done on a 0-5 scale with 0 = dark stain and 5 = no stain. In this test, the JONCRYL 1982 performed the best among water-based coatings, similar to the 2K systems, while JONCRYL 2990 had only slightly weaker dirt pick-up performance (Figure 13).

    Dirt pick-up resistance benchmarking results
    FIGURE 13 » Dirt pick-up resistance benchmarking results.

     

    Conclusions

    A variety of factors that influence hot tire pick-up were examined to give more reliable and consistent results in laboratory HTP testing. The best testing conditions identified from this study included utilization of a used higher performance tire, preheating the tire to 100 °C, pretreating the test substrate with a wet paper towel, and conducting the test under high temperature (60 °C).

    The newly developed test was then used to benchmark BASF’s 1K water-based resins for concrete/garage floor coatings against commercially available 1K water-based and 2K PU or epoxy-based coatings. The results show that the BASF products JONCRYL 1982 and 2990 approach the HTP performance of 2K systems while maintaining a good balance of other critical performance parameters (Figure 14). 

    Comparison of JONCRYL 2990 to other commercial 1K and 2K concrete coatings
    FIGURE 14 » Comparison of JONCRYL 2990 to other commercial 1K and 2K concrete coatings.

     

    References

    1 ASTM International https://www.astm.org/DATABASE.CART/WORKITEMS/WK14355.htm. (accessed June 10, 2019)

    2 https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/anova/supporting-topics/basics/what-is-a-main-effects-plot/. (accessed July 3, 2019)

    What to Read Next:

    UV Cure, TSCA Registration and SNURs

    An Epoxy Curing Agent with Superior Carbamate Stability

    KEYWORDS: Concrete Coatings testing

    Share This Story

    Looking for a reprint of this article?
    From high-res PDFs to custom plaques, order your copy today!

    Michael Krayer, BASF Corporation, Charlotte, NC

    Alexandra Jarriel, BASF Corporation, Charlotte, NC

    Recommended Content

    JOIN TODAY
    to unlock your recommendations.

    Already have an account? Sign In

    • PCI-0724-Global10-Feature-1440.png

      2024 Global Top 10: Top Paint and Coatings Companies

      Who ranks on top? PCI’s annual ranking of the top 10...
      Paint and Coating Market Reports
      By: Courtney Bassett
    • PCI-0724-PCI25-Feature-1440.png

      2024 PCI 25: Top Paint and Coatings Companies

      PCI's annual ranking of the top 25 North American paint...
      Global Top 10 and PCI 25
      By: Courtney Bassett
    • pci1022-Kinaltek-Lead-1170.jpg

      A Novel Pigment Production Technology

      Following an extensive R&D program that demonstrated...
      Paint and Coating Pigments
      By: Jawad Haidar and Nitin Soni
    You must login or register in order to post a comment.

    Report Abusive Comment

    Subscribe For Free!
    • eMagazine
    • eNewsletter
    • Online Registration
    • Subscription Customer Service

    CTT Registration Now Open

    CTT Registration Now Open

    The Coatings Minute: Print Returns with PCI’s New Showcase Issue

    The Coatings Minute: Print Returns with PCI’s New Showcase Issue

    The Coatings Minute: Explore the 2024 PCI/ASI CASE eBook

    The Coatings Minute: Explore the 2024 PCI/ASI CASE eBook

    The Coatings Minute: Why Industry News Matters More Than Ever

    The Coatings Minute: Why Industry News Matters More Than Ever

    More Videos

    Sponsored Content

    Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the PCI audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of PCI or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

    close
    • Modern arapartment complex painted in bright colors.
      Sponsored byEPS - Engineered Polymer Solutions

      Architectural Polymers Leading the Way in Coatings Innovation

    • paint sprayer in a workshop
      Sponsored byallnex

      Enabling Performance and Compliance: allnex Introduces a New Line of VOC Exempt Solvent-Borne Resins

    Popular Stories

    No. 3 AkzoNobel

    AkzoNobel to Close Two Manufacturing Sites

    A collage of products using non-PFAS

    A Surge in Non-PFAS Releases

    Default Aerospace Image

    PPG Plans Major Aerospace Facility



    PCI Buyers Guide

    Submit a Request for Proposal (RFP) to suppliers of your choice with details on what you need with a click of a button

    Start your RFP

    Browse our Buyers Guide for manufacturers and distributors of all types of coatings products and much more!

    Find Suppliers

    Events

    September 3, 2025

    Coatings Trends & Technologies Summit

    The Coatings Trends & Technologies (CTT) Summit is an annual conference for both liquid and powder coatings formulators and manufacturers to discuss innovations in coatings technology. This event combines high-quality technical presentations, a resource-rich exhibit hall, and dedicated networking opportunities to connect scientific minds, foster innovation, and cultivate game-changing new ideas!

    January 1, 2030

    Webinar Sponsorship Information

    For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

    View All Submit An Event

    Poll

    Longest-running laboratory experiment

    What is the longest-running laboratory experiment?
    View Results Poll Archive

    Products

    CTT Summit Short Courses (Live 9/3/25)

    Coatings Trends & Technologies Summit is expanding its offerings with four short courses. These short courses will offer an extensive day of interactive learning.

    See More Products
    pci  webinar april 2025

    PCI CASE EBOOK

    Related Articles

    • pci0818-AGC-532870753-900.jpg

      Latest Developments in Water-Based 2K FEVE Coatings

      See More
    • pci0419-Specialty154894276-900.jpg

      Challenges in Formulating Water-Based Clear Sealers for Concrete

      See More
    • pci0811-Reaxix-lg.jpg

      New Water-Soluble Catalyst for Two-Component Waterborne Polyurethane Coatings

      See More

    Related Products

    See More Products
    • organic coatings.jpg

      Organic Coatings: Science and Technology, 4th Edition

    • fluorinated2e.jpg

      Fluorinated Coatings and Finishes Handbook, 2nd Edition

    • failiure-analysis-of-paints

      Failure Analysis of Paints and Coatings, Revised Edition

    See More Products
    ×

    Keep the info flowing with our eNewsletters!

    Get the latest industry updates tailored your way.

    JOIN TODAY!
    • RESOURCES
      • Advertise
      • Contact Us
      • Directories
      • Store
      • Want More
    • SIGN UP TODAY
      • Create Account
      • eMagazine
      • eNewsletters
      • Customer Service
      • Manage Preferences
    • SERVICES
      • Marketing Services
      • Reprints
      • Market Research
      • List Rental
      • Survey & Sample
    • STAY CONNECTED
      • LinkedIn
      • Facebook
      • Youtube
      • X (Twitter)
    • PRIVACY
      • PRIVACY POLICY
      • TERMS & CONDITIONS
      • DO NOT SELL MY PERSONAL INFORMATION
      • PRIVACY REQUEST
      • ACCESSIBILITY

    Copyright ©2025. All Rights Reserved BNP Media.

    Design, CMS, Hosting & Web Development :: ePublishing

    Painting & Coating Industry (PCI) logo Powder coating summit logo
    search
    cart
    facebook twitter linkedin youtube
    • Sign In
    • Create Account
    • Sign Out
    • My Account
    Painting & Coating Industry (PCI) logo Powder coating summit logo
    • NEWS
      • Latest News
      • Market Trends & Reports
      • Price Alerts
      • Subscribe to eNewsletters
      • Global Top 10/ PCI 25
      • Weekly Featured Article
      • COATLE Word Game
    • PRODUCTS
      • Product News
      • Must See Products and Services
    • MATERIALS
      • Additives
      • Resins/Polymers
      • Pigments
      • Equipment
      • Distributors
    • TECHNOLOGIES
      • Adhesives
      • Architectural Coatings
      • Industrial Coatings
      • Nanotechnology
      • Powder Coatings
      • Solventborne
      • Special Purpose Coatings
      • Sustainability
      • UV Coatings
      • Waterborne
      • FINISHING
        • Finishing News
        • Finishing Technologies
        • Finishing Equipment
      • RESOURCES
        • Columns
          • Ask Joe Powder
          • Did you know?
          • Distribution Dive
          • Focus on Canada
          • Formulating With Mike
          • Innovation Insights
          • Moody's Coatings Conundrums
          • Powder Coating Perspectives
          • Target the Market
          • TiO2 Insider
        • Blogs
          • Editor's Viewpoint
          • Industry Insights
        • Coatings Supplier Handbook
        • Podcasts and Videos
          • COAT-IT! Podcast
          • Videos/PCI TV
        • PCI Store
        • eBooks
        • Sponsor Insights
        • White Papers
        • COATLE Word Game
      • EVENTS
        • Coatings Trends & Technologies Summit
        • Paint and Coatings Academy
        • Webinars
        • Calendar of Events
        • Lifetime Achievement Award
      • DIRECTORIES
        • Buyer's Guide
        • Equipment Directory
        • Materials Directory
      • EMAGAZINE
        • Current Issue
        • eMagazine Archive
        • China Issue Archive
        • Editorial Advisory Board
      • CONTACT
        • Contact Us
        • Advertise
        • Subscribe to eMagazine
        • Subscribe to eNewsletters